Chassis Assembly Detection and Identification Based on Deep Learning Component Instance Segmentation

被引:4
|
作者
Liu, Guixiong [1 ]
He, Binyuan [1 ]
Liu, Siyuang [1 ]
Huang, Jian [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Guangdong, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 08期
关键词
chassis assembly; deep learning; instance segmentation; chassis components; standard dictionary;
D O I
10.3390/sym11081001
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chassis assembly quality is a necessary step to improve product quality and yield. In recent years, with the continuous expansion of deep learning method, its application in product quality detection is increasingly extensive. The current limitations and shortcomings of existing quality detection methods and the feasibility of improving the deep learning method in quality detection are presented and discussed in this paper. According to the characteristics of numerous parts and complex types of chassis assembly components, a method for chassis assembly detection and identification based on deep learning component segmentation is proposed. In the proposed method, assembly quality detection is first performed using the Mask regional convolutional neural network component instance segmentation method, which reduces the influence of complex illumination conditions and background detection. Next, a standard dictionary of chassis assembly is built, which is connected with Mask R-CNN in a cascading way. The component mask is obtained through the detection result, and the component category and assembly quality information is extracted to realize chassis assembly detection and identification. To evaluate the proposed method, an industrial assembly chassis was used to create datasets, and the method is effective in limited data sets of industrial assembly chassis. The experimental results indicate that the accuracy of the proposed method can reach 93.7%. Overall, the deep learning method realizes complete automation of chassis assembly detection.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] An investigation of deep learning approaches for efficient assembly component identification
    Ramesh, Kaki
    Mushtaq, Faisel
    Deshmukh, Sandip
    Ray, Tathagata
    Parimi, Chandu
    Basem, Ali
    Elsheikh, Ammar
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2024, 13 (01)
  • [32] A Deep Detection Network Based on Interaction of Instance Segmentation and Object Detection for SAR Images
    Wu, Zitong
    Hou, Biao
    Ren, Bo
    Ren, Zhongle
    Wang, Shuang
    Jiao, Licheng
    REMOTE SENSING, 2021, 13 (13)
  • [33] Deep learning-based instance segmentation of cracks from shield tunnel lining images
    Huang, Hongwei
    Zhao, Shuai
    Zhang, Dongming
    Chen, Jiayao
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2022, 18 (02) : 183 - 196
  • [34] Identifying Surgical Instruments in Laparoscopy Using Deep Learning Instance Segmentation
    Kletz, Sabrina
    Schoeffmann, Klaus
    Benois-Pineau, Jenny
    Husslein, Heinrich
    2019 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2019,
  • [35] ISOODL: INSTANCE SEGMENTATION OF OVERLAPPING BIOLOGICAL OBJECTS USING DEEP LEARNING
    Boehm, Anton
    Uecker, Annekathrin
    Jaeger, Tim
    Ronneberger, Olaf
    Falk, Thorsten
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1225 - 1229
  • [36] Automated Multiple Concrete Damage Detection Using Instance Segmentation Deep Learning Model
    Kim, Byunghyun
    Cho, Soojin
    APPLIED SCIENCES-BASEL, 2020, 10 (22): : 1 - 17
  • [37] Deep learning instance segmentation framework for burnt area instances characterization
    Qurratulain, Safder
    Zheng, Zezhong
    Xia, Jun
    Ma, Yi
    Zhou, Fangrong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 116
  • [38] AUTOMATIC DETECTION AND TRACKING OF MOUNTING BEHAVIOR IN CATTLE USING A DEEP LEARNING-BASED INSTANCE SEGMENTATION MODEL
    Noe, Su myat
    Zin, Thi thi
    Tin, Pyke
    Kobayashi, Ikuo
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2022, 18 (01): : 211 - 220
  • [39] INSTANCE SEGMENTATION BY LEARNING DEEP FEATURE IN EMBEDDING SPACE
    Shang, Chao
    Wu, Qingbo
    Meng, Fanman
    Xu, Linfeng
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2444 - 2448
  • [40] Instance Segmentation and Number Counting of Grape Berry Images Based on Deep Learning
    Chen, Yanmin
    Li, Xiu
    Jia, Mei
    Li, Jiuliang
    Hu, Tianyang
    Luo, Jun
    APPLIED SCIENCES-BASEL, 2023, 13 (11):