On Minimization of Upper Bound for the Convergence Rate of the QHSS Iteration Method

被引:4
作者
Wu, Wen-Ting [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, POB 2719, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
System of linear equations; Non-Hermitian matrix; QHSS iteration method; Convergence rate; HERMITIAN SPLITTING METHODS; CYCLICALLY REDUCED SYSTEMS; BLOCK SSOR PRECONDITIONERS; RELAXATION METHODS; LINEAR-SYSTEMS; ACCELERATION;
D O I
10.1007/s42967-019-00015-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an upper bound of the spectral radius of the QHSS (quasi Hermitian and skew-Hermitian splitting) iteration matrix which can also bound the contraction factor of the QHSS iteration method, we give its minimum point under the conditions which guarantee that the upper bound is strictly less than one. This provides a good choice of the involved iteration parameters, so that the convergence rate of the QHSS iteration method can be significantly improved.
引用
收藏
页码:263 / 282
页数:20
相关论文
共 39 条
[1]   A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part [J].
Axelsson, O ;
Bai, ZZ ;
Qiu, SX .
NUMERICAL ALGORITHMS, 2004, 35 (2-4) :351-372
[2]  
Bai Z.-Z., 2007, Hokkaido Math. J., V36, P801
[3]   On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations [J].
Bai, Zhong-Zhi ;
Golub, Gene H. ;
Ng, Michael K. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (04) :319-335
[4]  
Bai ZZ, 2007, IMA J NUMER ANAL, V27, P1, DOI [10.1093/imanum/drl017, 10.1093/imanum/dr1017]
[5]   Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices [J].
Bai, Zhong-Zhi ;
Golub, Gene H. ;
Li, Chi-Kwong .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) :583-603
[6]   Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (04)
[7]   On SSOR-like preconditioners for non-Hermitian positive definite matrices [J].
Bai, Zhong-Zhi .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (01) :37-60
[8]  
Bai Zhongzhi, 2002, Mathematica Numerica Sinica, V24, P113
[9]   Block triangular and skew-Hermitian splitting methods for positive-definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Lu, LZ ;
Yin, JF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03) :844-863
[10]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32