SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE USING PCA AND GABOR FILTERING

被引:3
|
作者
Yan, Qingyu [1 ]
Zhang, Junping [1 ]
Feng, Jia [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image classification; spatial texture information; rolling guidance filter;
D O I
10.1109/IGARSS39084.2020.9324555
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of spectral information and spatial context is known to be a suitable way in improving classification accuracy for hyperspectral image. In this paper, a novel method using PCA and spatial filtering for the classification of hyperspectral image is proposed. Firstly, PCA is used to extract spectral information from the hyperspectral image. Secondly, spatial filters containing a set of 2-D Gabor filters and rolling guidance filters (RGF) are convolved with the principal components to extract the subtle spatial texture and edge features respectively. Thirdly, the obtained features are concatenated together as a feature cube to be classified by SVM. The proposed method is thus named as PCA-GR. Experimental results on two real hyperspectral image data sets demonstrate the significant advantages of the proposed method over the compared ones.
引用
收藏
页码:513 / 516
页数:4
相关论文
共 50 条
  • [21] Hyperspectral image classification using a spectral-spatial sparse coding model
    Oguslu, Ender
    Zhou, Guoqing
    Li, Jiang
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIX, 2013, 8892
  • [22] Spectral-Spatial Attention Networks for Hyperspectral Image Classification
    Mei, Xiaoguang
    Pan, Erting
    Ma, Yong
    Dai, Xiaobing
    Huang, Jun
    Fan, Fan
    Du, Qinglei
    Zheng, Hong
    Ma, Jiayi
    REMOTE SENSING, 2019, 11 (08)
  • [23] SPECTRAL-SPATIAL ROTATION FOREST FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5126 - 5129
  • [24] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [25] Hyperspectral image classification using a spectral-spatial random walker method
    Ghasrodashti, Elham Kordi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (10) : 3948 - 3967
  • [26] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [27] A Complementary Spectral-Spatial Method for Hyperspectral Image Classification
    Shi, Lulu
    Li, Chunchao
    Li, Teng
    Peng, Yuanxi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] Spectral-Spatial Rotation Forest for Hyperspectral Image Classification
    Xia, Junshi
    Bombrun, Lionel
    Berthoumieu, Yannick
    Germain, Christian
    Du, Peijun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (10) : 4605 - 4613
  • [29] Sparse Representations for the Spectral-Spatial Classification of Hyperspectral Image
    Hamdi, Mohamed Ali
    Ben Salem, Rafika
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 923 - 929
  • [30] Spectral-Spatial Unified Networks for Hyperspectral Image Classification
    Xu, Yonghao
    Zhang, Liangpei
    Du, Bo
    Zhang, Fan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 5893 - 5909