Multifractal surfaces and terrestrial topography

被引:24
作者
Gagnon, JS
Lovejoy, S
Schertzer, D
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] Univ Paris 06, LMM, F-75252 Paris 05, France
来源
EUROPHYSICS LETTERS | 2003年 / 62卷 / 06期
关键词
D O I
10.1209/epl/i2003-00443-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze terrestrial topographic data from four Digital Elevation Models which collectively span the range 20000 km to 50 cm. We use power spectra and trace moment analysis techniques to show that topography is multifractal from planetary scales down to around 40 m, where the multiscaling is broken by trees. We show that over this range the topography is reasonably described by a global nonlinear moment scaling function, itself determined by three parameters. We argue that these isotropic analyses are insensitive to the anisotropies and are hence compatible with different geomorphologies.
引用
收藏
页码:801 / 807
页数:7
相关论文
共 30 条
[1]  
ADDOR JB, 2000, P 13 INT C CLOUDS PR, V1, P1152
[2]  
ADDOR JB, 2000, P 13 INT C CLOUDS PR, V2, P1152
[3]  
[Anonymous], 1983, New York
[4]  
BERRY MV, 1978, NATURE, V273, P573, DOI 10.1038/273573a0
[5]   STATISTICS OF BRANCHED FRACTURE SURFACES [J].
BOUCHAUD, E ;
LAPASSET, G ;
PLANES, J ;
NAVEOS, S .
PHYSICAL REVIEW B, 1993, 48 (05) :2917-2928
[6]   Variable length scale analysis of surface topography: characterization of titanium surfaces for biomedical applications [J].
Chauvy, PF ;
Madore, C ;
Landolt, D .
SURFACE & COATINGS TECHNOLOGY, 1998, 110 (1-2) :48-56
[7]  
GAGNON JS, UNPUB J GEOPHYS RES
[8]   GENERALIZED DIMENSIONS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1983, 97 (06) :227-230
[9]   THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS [J].
HENTSCHEL, HGE ;
PROCACCIA, I .
PHYSICA D, 1983, 8 (03) :435-444
[10]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892