Chern-Simons theory in the temporal gauge and knot invariants through the universal quantum R-matrix

被引:80
作者
Morozov, Alexei [1 ]
Smirnov, Andrey [1 ]
机构
[1] ITEP, Moscow, Russia
关键词
Chern-Simons theory; Quantum groups; Knot invariants; Q-HYPERGEOMETRIC FUNCTIONS; YANG-BAXTER EQUATION; PERTURBATION-THEORY; VASSILIEV INVARIANTS; LINK POLYNOMIALS; FREE FIELDS; 3-MANIFOLDS; ALGEBRAS; DILOGARITHM; MODEL;
D O I
10.1016/j.nuclphysb.2010.03.012
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In temporal gauge A(0) = 0 the 3d Chern-Simons theory acquires quadratic action and an ultralocal propagator. This directly implies a 2d R-matrix representation for the correlators of Wilson lines (knot invariants), where only the crossing points of the contours projection on the xy plane contribute. Though the theory is quadratic, P-exponents remain non-trivial operators and R-factors are easier to guess then derive. We show that the topological invariants arise if additional flag structure R-3 superset of R-2 superset of R-1 (xy plane and a y line in it) is introduced. R is the universal quantum R-matrix and turning points contribute the "enhancement" factors q(p). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:284 / 313
页数:30
相关论文
共 73 条
[61]  
Morozov A. Yu., 1992, Soviet Physics - Uspekhi, V35, P671, DOI 10.1070/PU1992v035n08ABEH002255
[62]  
Reidemeister K., 1926, ABH MATH SEM HAMBURG, V5, P24
[63]   INVARIANTS OF 3-MANIFOLDS VIA LINK POLYNOMIALS AND QUANTUM GROUPS [J].
RESHETIKHIN, N ;
TURAEV, VG .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :547-597
[64]   RIBBON GRAPHS AND THEIR INVARIANTS DERIVED FROM QUANTUM GROUPS [J].
RESHETIKHIN, NY ;
TURAEV, VG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :1-26
[65]   PARTITION-FUNCTION OF A DEGENERATE FUNCTIONAL [J].
SCHWARZ, AS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 67 (01) :1-16
[66]  
SMIRNOV A, 2009, P INT SCH S IN PRESS
[67]   THE YANG-BAXTER EQUATION AND INVARIANTS OF LINKS [J].
TURAEV, VG .
INVENTIONES MATHEMATICAE, 1988, 92 (03) :527-553
[68]   STATE SUM INVARIANTS OF 3-MANIFOLDS AND QUANTUM 6J-SYMBOLS [J].
TURAEV, VG ;
VIRO, OY .
TOPOLOGY, 1992, 31 (04) :865-902
[69]  
TURAEV VG, 1986, USP MAT NAUK, V41, P97
[70]  
TURAEV VG, 1994, DEGRUYTER STUD MATH, V18, P1