Chern-Simons theory in the temporal gauge and knot invariants through the universal quantum R-matrix

被引:80
作者
Morozov, Alexei [1 ]
Smirnov, Andrey [1 ]
机构
[1] ITEP, Moscow, Russia
关键词
Chern-Simons theory; Quantum groups; Knot invariants; Q-HYPERGEOMETRIC FUNCTIONS; YANG-BAXTER EQUATION; PERTURBATION-THEORY; VASSILIEV INVARIANTS; LINK POLYNOMIALS; FREE FIELDS; 3-MANIFOLDS; ALGEBRAS; DILOGARITHM; MODEL;
D O I
10.1016/j.nuclphysb.2010.03.012
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In temporal gauge A(0) = 0 the 3d Chern-Simons theory acquires quadratic action and an ultralocal propagator. This directly implies a 2d R-matrix representation for the correlators of Wilson lines (knot invariants), where only the crossing points of the contours projection on the xy plane contribute. Though the theory is quadratic, P-exponents remain non-trivial operators and R-factors are easier to guess then derive. We show that the topological invariants arise if additional flag structure R-3 superset of R-2 superset of R-1 (xy plane and a y line in it) is introduced. R is the universal quantum R-matrix and turning points contribute the "enhancement" factors q(p). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:284 / 313
页数:30
相关论文
共 73 条
[1]   Topological invariants of knots and links [J].
Alexander, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :275-306
[2]   ANALYSIS OF OBSERVABLES IN CHERN-SIMONS PERTURBATION-THEORY [J].
ALVAREZ, M ;
LABASTIDA, JMF .
NUCLEAR PHYSICS B, 1993, 395 (1-2) :198-238
[3]   NUMERICAL KNOT INVARIANTS OF FINITE-TYPE FROM CHERN-SIMONS PERTURBATION-THEORY [J].
ALVAREZ, M ;
LABASTIDA, JMF .
NUCLEAR PHYSICS B, 1995, 433 (03) :555-596
[4]   Vassiliev invariants for links from Chern-Simons perturbation theory [J].
Alvarez, M ;
Labastida, JMF ;
Perez, E .
NUCLEAR PHYSICS B, 1997, 488 (03) :677-718
[5]  
ALVAREZ M, 1997, COMMUN MATH PHYS, V641
[6]  
ATIYAH MF, 1987, MATH HERITAGE HERMAN, P285
[7]  
Baxter R., 2007, Exactly Solved Models in Statistical Mechanics
[8]  
Chari V., 1994, A Guide to Quantum Groups
[9]  
Dimofte T, 2009, COMMUN NUMBER THEORY, V3, P363
[10]  
Drinfeld V.G., 1986, ZAP NAUCHN SEMIN, V155, P18, DOI 10.1007/BF01247086