The convergence of the modified Gauss-Seidel methods for consistent linear systems

被引:14
作者
Li, W [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Peoples R China
关键词
modified Gauss-Seidel methods; consistent linear system; convergence;
D O I
10.1016/S0377-0427(02)00812-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a convergence analysis for the modified Gauss-Seidel methods given in Gunawardena et al. (Linear Algebra Appl. 154-156 (1991) 125) and Kohno et al. (Linear Algebra Appl. 267 (1997) 113) for consistent linear systems. We prove that the modified Gauss-Seidel method converges for some values of the parameters in the preconditioned matrix. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 105
页数:9
相关论文
共 7 条
[1]  
Berman A., 1994, CLASSICS APPL MATH, DOI [10.1016/C2013-0-10361-3, 10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[2]   MODIFIED ITERATIVE METHODS FOR CONSISTENT LINEAR-SYSTEMS [J].
GUNAWARDENA, AD ;
JAIN, SK ;
SNYDER, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 154 :123-143
[3]   Improving the modified Gauss-Seidel method for Z-matrices [J].
Kohno, T ;
Kotakemori, H ;
Niki, H ;
Usui, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 267 :113-123
[4]   Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices [J].
Li, W ;
Sun, WW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 317 (1-3) :227-240
[5]  
Li W, 1998, J COMPUT MATH, V16, P367
[6]  
LI W, 1992, LINEAR ALGEBRA ITS A, V177, P163