Diameter 2 properties and convexity

被引:19
作者
Abrahamsen, Trond Arnold [1 ]
Hajek, Petr [2 ,3 ]
Nygaard, Olav [1 ]
Talponen, Jarno [4 ]
Troyanski, Stanimir [5 ,6 ]
机构
[1] Univ Agder, Dept Math, Postbox 422, N-4604 Kristiansand, Norway
[2] Acad Sci Czech Republic, Math Inst, Zitna 25, CR-11567 Prague 1, Czech Republic
[3] Czech Tech Univ, Fac Elect Engn, Dept Math, Zikova 4, Prague, Czech Republic
[4] Univ Eastern Finland, Dept Math & Phys, Box 111, FI-80101 Joensuu, Finland
[5] Univ Murcia, Dept Matemat, Campus Espinardo, Espinardo 30100, Murcia, Spain
[6] Bulgarian Acad Sci, Inst Math & Informat, Bl 8,Acad G Bonchev St, BU-1113 Sofia, Bulgaria
基金
芬兰科学院;
关键词
diameter; 2; property; midpoint locally uniformly rotund; Daugavet property; WEAKLY OPEN SUBSETS; BANACH-SPACES; M-IDEALS; SLICES;
D O I
10.4064/sm8317-4-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an equivalent midpoint locally uniformly rotund (MLUR) renorming of C[0, 1] with the diameter 2 property (D2P), i.e. every non-empty relatively weakly open subset of the unit ball has diameter 2. An example of an MLUR space with the D2P and with convex combinations of slices of arbitrarily small diameter is also given.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 20 条
  • [1] Abrahamsen T, 2013, J CONVEX ANAL, V20, P439
  • [2] Acosta MD, 2015, J CONVEX ANAL, V22, P1
  • [3] [Anonymous], 1993, LECT NOTES MATH
  • [4] Big slices versus big relatively weakly open subsets in Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Zoca, Abraham Rueda
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (02) : 855 - 865
  • [5] Extreme differences between weakly open subsets and convex combinations of slices in Banach spaces
    Becerra Guerrero, Julio
    Lopez-Perez, Gines
    Rueda Zoca, Abraham
    [J]. ADVANCES IN MATHEMATICS, 2015, 269 : 56 - 70
  • [6] Deville R., 1993, PITMAN MONOGR SURVEY, V64
  • [7] Fabian M, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-7515-7
  • [8] Ghoussoub N., 1987, MEM AM MATH SOC, V70
  • [9] ON THE STRONGLY EXTREME-POINTS OF CONVEX-BODIES IN SEPARABLE BANACH-SPACES
    GODUN, BV
    LIN, BL
    TROYANSKI, SL
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (03) : 673 - 675
  • [10] Haller R, 2015, J CONVEX ANAL, V22, P465