The modified box-counting method: Analysis of some characteristic parameters

被引:114
作者
Buczkowski, S [1 ]
Kyriacos, S [1 ]
Nekka, F [1 ]
Cartilier, L [1 ]
机构
[1] Univ Montreal, Fac Pharm, Montreal, PQ H3C 3J7, Canada
关键词
fractal geometry; fractal dimension; box-counting method; image analysis;
D O I
10.1016/S0031-3203(97)00054-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most popular ways of estimating fractal dimension (DS) is the box-counting method (BCM). The major problem with this method is that it leads to results with a very high percentage of error. The modified box-counting method (MBCM) was developed as a methodic procedure to set sequence and range. The procedure eliminates two problems of the computerized BCM, the border effect and noninteger values of E. The MBCM is a new, powerful tool, very simple to use, allowing accurate estimation of Df. (C) 1998 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 27 条
  • [1] Avnir D., 1989, The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers
  • [2] Barnsley M. F., 2014, Fractals Everywhere
  • [3] Barnsley M.F., 1988, The Science of Fractal Images
  • [4] EFFICIENT BOX-COUNTING DETERMINATION OF GENERALIZED FRACTAL DIMENSIONS
    BLOCK, A
    VONBLOH, W
    SCHELLNHUBER, HJ
    [J]. PHYSICAL REVIEW A, 1990, 42 (04): : 1869 - 1874
  • [5] ON THE CALCULATION OF FRACTAL FEATURES FROM IMAGES
    CHEN, SS
    KELLER, JM
    CROWNOVER, RM
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) : 1087 - 1090
  • [6] EVALUATING THE FRACTAL DIMENSION OF PROFILES
    DUBUC, B
    QUINIOU, JF
    ROQUESCARMES, C
    TRICOT, C
    ZUCKER, SW
    [J]. PHYSICAL REVIEW A, 1989, 39 (03) : 1500 - 1512
  • [7] GENERAL INTERPOLATION SCHEMES FOR THE GENERATION OF IRREGULAR SURFACES
    DUBUC, S
    NEKKA, F
    [J]. CONSTRUCTIVE APPROXIMATION, 1993, 9 (04) : 525 - 542
  • [8] FALCONER K, 1990, FRACTAL GEOMETRIES T
  • [9] Feder J., 1988, FRACTALS
  • [10] COMPUTER RENDERING OF STOCHASTIC-MODELS
    FOURNIER, A
    FUSSELL, D
    CARPENTER, L
    [J]. COMMUNICATIONS OF THE ACM, 1982, 25 (06) : 371 - 384