Effect of water composition on the photocatalytic removal of pesticides with different TiO2 catalysts

被引:24
作者
Carbajo, Jaime [1 ]
Garcia-Munoz, Patricia [1 ]
Tolosana-Moranchel, Alvaro [1 ]
Faraldos, Marisol [1 ]
Bahamonde, Ana [1 ]
机构
[1] ICP CSIC, Inst Catalisis & Petroleoquim, Madrid 28049, Spain
关键词
Titania; Photocatalysis; Inorganic ions; Pesticides; Dichloroacetic acid; Natural water; PRIORITY SUBSTANCES; DEGRADATION; KINETICS; PARAMETERS; PARTICLES;
D O I
10.1007/s11356-014-3111-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The objective of this work is double-firstly to explore the photocatalytic efficiency of five different commercial TiO2 catalysts in the photodegradation of a mixture of pesticides classified by the EU as priority pollutants and secondly to analyze the correlation between their physicochemical properties and the inhibition of the studied photocatalytic process when natural water was employed. Photocatalytic efficiencies when ultrapure water was used seem to point out that surface area was not a prerequisite for the photodegradation of the selected mixture of pesticides. On the other hand, significant differences in total organic carbon (TOC) conversions were obtained with the two studied water compositions. On one side, Evonik materials appear to be mostly inhibited when natural water was employed, whereas on the other, it should be remarked that anatase Sigma-Aldrich (SA) and, particularly, Hombikat UV100 (HBK) materials presented a very limited photo-efficiency inhibition or even a higher initial rate of TOC removal when a natural water matrix was used, probably due to their specific surface properties (PZC, S-BET). Therefore, heterogeneous photocatalysis has proved to be a promising technology for the degradation of the selected mixture of pesticides where the final photo-efficiency of the five commercial titania catalysts studied here responds to a complex balance between its surface and structural properties.
引用
收藏
页码:12233 / 12240
页数:8
相关论文
共 24 条
[1]   Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments [J].
Ahmed, Saber ;
Rasul, M. G. ;
Martens, Wayde N. ;
Brown, R. ;
Hashib, M. A. .
DESALINATION, 2010, 261 (1-2) :3-18
[2]   Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review [J].
Ahmed, Saber ;
Rasul, M. G. ;
Brown, R. ;
Hashib, M. A. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2011, 92 (03) :311-330
[3]  
APHA AWWA WEF, 2012, An. Hidrol. Medica., DOI [10.5209/rev_ANHM.2012.v5.n2.40440, DOI 10.5209/REV_ANHM.2012.V5.N2.40440, DOI 10.5209/REVANHM.2012.V5.N2.40440,186]
[4]   A STRUCTURAL INVESTIGATION OF TITANIUM-DIOXIDE PHOTOCATALYSTS [J].
BICKLEY, RI ;
GONZALEZCARRENO, T ;
LEES, JS ;
PALMISANO, L ;
TILLEY, RJD .
JOURNAL OF SOLID STATE CHEMISTRY, 1991, 92 (01) :178-190
[5]   Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent [J].
Carbonaro, Sean ;
Sugihara, Matthew N. ;
Strathmann, Timothy J. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 129 :1-12
[6]   Recent developments in photocatalytic water treatment technology: A review [J].
Chong, Meng Nan ;
Jin, Bo ;
Chow, Christopher W. K. ;
Saint, Chris .
WATER RESEARCH, 2010, 44 (10) :2997-3027
[7]   Probing multiple effects of TiO2 sintering temperature on photocatalytic activity in water by use of a series of organic pollutant molecules [J].
Enriquez, Rosario ;
Agrios, Alexander G. ;
Pichat, Pierre .
CATALYSIS TODAY, 2007, 120 (02) :196-202
[8]   TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis [J].
Friedmann, Donia ;
Mendive, Cecilia ;
Bahnemann, Detlef .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 99 (3-4) :398-406
[9]   Degradation of pesticides in water using solar advanced oxidation processes [J].
Hincapie Perez, Margarita ;
Penuela, Gustavo ;
Maldonado, Manuel I. ;
Malato, Octavio ;
Fernandez-Ibanez, Pilar ;
Oller, Isabel ;
Gernjak, Wolfgang ;
Malato, Sixto .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2006, 64 (3-4) :272-281
[10]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96