Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials

被引:22
|
作者
Kaltenbacher, M. [1 ]
Kaltenbacher, B. [2 ]
Hegewald, T. [3 ]
Lerch, R. [3 ]
机构
[1] Univ Klagenfurt, Klagenfurt, Austria
[2] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[3] Univ Erlangen Nurnberg, Dept Sensor Technol, Erlangen, Germany
关键词
piezoelectric actuators; ferroelectric hysteresis; finite element method; quasi-Newton scheme; MODEL; ACTUATORS; EVOLUTION; CERAMICS; BEHAVIOR;
D O I
10.1177/1045389X10366319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For the numerical simulation of non-linear piezoelectric material behavior, we use a constitutive relation that is based on a decomposition of the physical quantities dielectric displacement and mechanical strain into a reversible and an irreversible part. Therein, we set the irreversible part of the dielectric displacement equal to the irreversible electric polarization and express the irreversible mechanical strain by a polynomial ansatz of the irreversible electric polarization. The reversible parts of mechanical strain and dielectric displacement are further described by the linear piezoelectric constitutive law. We apply a Preisach hysteresis operator to compute the irreversible polarization from the history of the driving electric field. Furthermore, the entries of the piezoelectric modulus tensor are assumed to be functions of the electric polarization. To efficiently solve the non-linear system of partial differential equations, we have developed a quasi-Newton scheme and use the finite element (FE) method for the numerical solution. This FE scheme has been applied to numerically calculate the dynamic behavior of a piezoelectric disc and a stack actuator. The obtained results compare well to measured data.
引用
收藏
页码:773 / 785
页数:13
相关论文
共 50 条
  • [21] Finite element analysis of cracks in ferroelectric ceramic materials
    Chen, W
    Lynch, CS
    ENGINEERING FRACTURE MECHANICS, 1999, 64 (05) : 539 - 562
  • [22] Convolution finite element method for analysis of piezoelectric materials
    Amiri-Hezaveh, A.
    Moghaddasi, H.
    Ostoja-Starzewski, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 400
  • [23] Efficient Modeling of Ferroelectric Behavior for the Finite Element Analysis of Piezoelectric Actuators
    Hegewald, Thomas
    Leder, Erich
    Kaltenbacher, Manfred
    Lerch, Reinhard
    2006 15th IEEE International Symposium on Applications of Ferroelectrics, 2007, : 239 - 242
  • [24] Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior
    Kamlah, M
    Böhle, U
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (04) : 605 - 633
  • [25] Finite element formulation for dynamics of delaminated composite beams with piezoelectric actuators
    Perel, VY
    Palazotto, AN
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2002, 39 (17) : 4457 - 4483
  • [26] A finite-element-based formulation for sensitivity studies of piezoelectric systems
    Perry, M. A.
    Bates, R. A.
    Atherton, M. A.
    Wynn, H. P.
    SMART MATERIALS & STRUCTURES, 2008, 17 (01):
  • [27] A simple finite element formulation for a laminated composite plate with piezoelectric layers
    Suleman, A
    Venkayya, VB
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1995, 6 (06) : 776 - 782
  • [28] A finite element approach for domain wall dynamics in ferroelectric materials
    Su, Y
    Landis, CM
    Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, 2005, 5761 : 530 - 541
  • [29] FINITE ELEMENT BASED SIMULATION OF PIEZOELECTRIC MATERIALS FOR VIBRATION SUPPRESSION
    Ramesh, S.
    2011 3RD INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT (ICCTD 2011), VOL 1, 2012, : 689 - 693
  • [30] A finite element approach for computing edge singularities in piezoelectric materials
    Sze, KY
    Wang, HT
    Fan, H
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (50-51) : 9233 - 9252