Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials

被引:22
作者
Kaltenbacher, M. [1 ]
Kaltenbacher, B. [2 ]
Hegewald, T. [3 ]
Lerch, R. [3 ]
机构
[1] Univ Klagenfurt, Klagenfurt, Austria
[2] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[3] Univ Erlangen Nurnberg, Dept Sensor Technol, Erlangen, Germany
关键词
piezoelectric actuators; ferroelectric hysteresis; finite element method; quasi-Newton scheme; MODEL; ACTUATORS; EVOLUTION; CERAMICS; BEHAVIOR;
D O I
10.1177/1045389X10366319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For the numerical simulation of non-linear piezoelectric material behavior, we use a constitutive relation that is based on a decomposition of the physical quantities dielectric displacement and mechanical strain into a reversible and an irreversible part. Therein, we set the irreversible part of the dielectric displacement equal to the irreversible electric polarization and express the irreversible mechanical strain by a polynomial ansatz of the irreversible electric polarization. The reversible parts of mechanical strain and dielectric displacement are further described by the linear piezoelectric constitutive law. We apply a Preisach hysteresis operator to compute the irreversible polarization from the history of the driving electric field. Furthermore, the entries of the piezoelectric modulus tensor are assumed to be functions of the electric polarization. To efficiently solve the non-linear system of partial differential equations, we have developed a quasi-Newton scheme and use the finite element (FE) method for the numerical solution. This FE scheme has been applied to numerically calculate the dynamic behavior of a piezoelectric disc and a stack actuator. The obtained results compare well to measured data.
引用
收藏
页码:773 / 785
页数:13
相关论文
共 28 条
[21]   FEM-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials [J].
Lahmer, Tom ;
Kaltenbacher, Manfred ;
Kaltenbacher, Barbara ;
Lerch, Reinhard ;
Leder, Erich .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (02) :465-475
[22]   Non-linear constitutive modeling of ferroelectrics [J].
Landis, CM .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (01) :59-69
[23]   A constitutive model for magnetostrictive and piezoelectric materials [J].
Linnemann, K. ;
Klinkel, S. ;
Wagner, W. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (05) :1149-1166
[24]   A principle of virtual work for combined electrostatic and mechanical loading of materials [J].
McMeeking, Robert M. ;
Landis, Chad M. ;
Jimenez, Salomon M. A. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2007, 42 (06) :831-838
[25]   A hybrid analytical/numerical model of piezoelectric stack actuators using a macroscopic nonlinear theory of ferroelectricity and a Preisach model of hysteresis [J].
Pasco, Y ;
Berry, A .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2004, 15 (05) :375-386
[26]   A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting [J].
Schröder, J ;
Romanowski, H .
ARCHIVE OF APPLIED MECHANICS, 2005, 74 (11-12) :863-877
[27]  
Smith RC, 2003, J INTEL MAT SYST STR, V14, P719, DOI [10.1177/1045389X03038841, 10.1177/104538903038841]
[28]   Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning [J].
Su, Yu ;
Landis, Chad M. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (02) :280-305