Finite Element Formulation for Ferroelectric Hysteresis of Piezoelectric Materials

被引:22
|
作者
Kaltenbacher, M. [1 ]
Kaltenbacher, B. [2 ]
Hegewald, T. [3 ]
Lerch, R. [3 ]
机构
[1] Univ Klagenfurt, Klagenfurt, Austria
[2] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
[3] Univ Erlangen Nurnberg, Dept Sensor Technol, Erlangen, Germany
关键词
piezoelectric actuators; ferroelectric hysteresis; finite element method; quasi-Newton scheme; MODEL; ACTUATORS; EVOLUTION; CERAMICS; BEHAVIOR;
D O I
10.1177/1045389X10366319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For the numerical simulation of non-linear piezoelectric material behavior, we use a constitutive relation that is based on a decomposition of the physical quantities dielectric displacement and mechanical strain into a reversible and an irreversible part. Therein, we set the irreversible part of the dielectric displacement equal to the irreversible electric polarization and express the irreversible mechanical strain by a polynomial ansatz of the irreversible electric polarization. The reversible parts of mechanical strain and dielectric displacement are further described by the linear piezoelectric constitutive law. We apply a Preisach hysteresis operator to compute the irreversible polarization from the history of the driving electric field. Furthermore, the entries of the piezoelectric modulus tensor are assumed to be functions of the electric polarization. To efficiently solve the non-linear system of partial differential equations, we have developed a quasi-Newton scheme and use the finite element (FE) method for the numerical solution. This FE scheme has been applied to numerically calculate the dynamic behavior of a piezoelectric disc and a stack actuator. The obtained results compare well to measured data.
引用
收藏
页码:773 / 785
页数:13
相关论文
共 50 条
  • [1] Finite element analysis of ferroelectric hysteresis effects in piezoelectric transducers
    Simkovics, R
    Landes, H
    Kaltenbacher, M
    Lerch, R
    2000 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2000, : 1081 - 1084
  • [2] Dissipative Finite-Element Formulation Applied to Piezoelectric Materials With the Debye Memory
    Palma, Roberto
    Perez-Aparicio, Jose L.
    Taylor, Robert L.
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (02) : 856 - 863
  • [3] A nonlinear finite element method for ferroelectric structures with hysteresis
    Huang, Ruo-Yu
    Wu, Chang-Chun
    Key Engineering Materials, 2004, 274-276 (0I) : 685 - 690
  • [4] A nonlinear finite element method for ferroelectric structures with hysteresis
    Huang, RY
    Wu, CC
    ADVANCES IN ENGINEERING PLASTICITY AND ITS APPLICATIONS, PTS 1 AND 2, 2004, 274-276 : 685 - 690
  • [5] Finite element formulation for piezoelectric semiconductor plates
    Zhao, MingHao
    Yan, XiaoYing
    Wang, BingBing
    Zhang, QiaoYun
    MATERIALS TODAY COMMUNICATIONS, 2022, 30
  • [6] Finite element analysis of hysteresis effects in piezoelectric transducers
    Simkovics, R
    Landes, H
    Kaltenbacher, M
    Hoffelner, J
    Lerch, R
    SMART STRUCTURES AND MATERIALS 2000: MATHEMATICS AND CONTROL IN SMART STRUCTURES, 2000, 3984 : 33 - 44
  • [7] Nonlinear constitutive law for ferroelectric-ferroelastic materials and its finite element formulation
    Li, YC
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2005, 16 (7-8) : 659 - 671
  • [8] Finite element analysis of piezoelectric materials
    Zhang, Aiguo
    Yang, Tiejun
    Du, Jingtao
    Lv, Peng
    Li, Xinguang
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 872 - +
  • [9] An advanced finite element formulation for piezoelectric beam structures
    Legner, D.
    Wackerfuss, J.
    Klinkel, S.
    Wagner, W.
    COMPUTATIONAL MECHANICS, 2013, 52 (06) : 1331 - 1349
  • [10] An advanced finite element formulation for piezoelectric shell structures
    Legner, D.
    Klinkel, S.
    Wagner, W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 95 (11) : 901 - 927