Vector Invariants of a Class of Pseudoreflection Groups and Multisymmetric Syzygies

被引:0
作者
Domokos, M. [1 ]
机构
[1] Hungarian Acad Sci, Renyi Inst Math, H-1364 Budapest, Hungary
关键词
Multisymmetric polynomials; reflection groups; polynomial invariant; second fundamental theorem; ideal of relations; trace identities; FINITE-GROUPS; SYMMETRIC-GROUPS; RING; REPRESENTATIONS; GENERATORS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First and second fundamental theorems are given for polynomial invariants of a class of pseudo-reflection groups (including the Weyl groups of type B.), under the assumption that the order of the group is invertible in the base field. As a special case, a finite presentation of the algebra of multisymmetric polynomials is obtained. Reducedness of the invariant commuting scheme is proved as a by-product. The algebra of multisymmetric polynomials over an arbitrary base ring is revisited.
引用
收藏
页码:507 / 525
页数:19
相关论文
共 43 条
[1]  
Amitsur SA., 1979, Linear and Multilinear Algebra, V8, P177, DOI DOI 10.1080/03081088008817315
[2]   ON AZUMAYA ALGEBRAS AND FINITE DIMENSIONAL REPRESENTATIONS OF RINGS [J].
ARTIN, M .
JOURNAL OF ALGEBRA, 1969, 11 (04) :532-&
[3]   SOME REMARKS ON TRACE COCHARACTERS [J].
BERELE, A ;
REGEV, A .
JOURNAL OF ALGEBRA, 1995, 176 (03) :1013-1024
[4]  
Berele A., 1996, INT J ALGEBR COMPUT, V6, P645, DOI DOI 10.1142/S0218196796000374
[5]  
Briand E., 2004, BEITRAGE ALGEBRA GEO, V45, P353
[6]  
Bukhshtaber V.M., 2004, USP MAT NAUK, V59, P125
[7]   INVARIANTS OF FINITE GROUPS GENERATED BY REFLECTIONS [J].
CHEVALLEY, C .
AMERICAN JOURNAL OF MATHEMATICS, 1955, 77 (04) :778-782
[8]  
Dalbec John, 1999, Beitrage Algebra Geom., V40, P27
[9]   Degree bounds for syzygies of invariants [J].
Derksen, H .
ADVANCES IN MATHEMATICS, 2004, 185 (02) :207-214
[10]  
Derksen H., 2002, Encyclopaedia of Mathematical Sciences, V130