Autonomous Nanocrystal Doping by Self-Driving Fluidic Micro-Processors

被引:23
作者
Bateni, Fazel [1 ]
Epps, Robert W. [1 ]
Antami, Kameel [1 ]
Dargis, Rokas [1 ]
Bennett, Jeffery A. [1 ]
Reyes, Kristofer G. [2 ]
Abolhasani, Milad [1 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[2] Univ Buffalo, Dept Mat Design & Innovat, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
autonomous experimentation; digital twin; metal halide perovskite nanocrystals; modular flow chemistry; smart nanomanufacturing; HALIDE-PEROVSKITE NANOCRYSTALS; ACCELERATED DISCOVERY; QUANTUM DOTS; PHOTOLUMINESCENCE; NANOPLATELETS; EMISSION; PROGRESS;
D O I
10.1002/aisy.202200017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lead halide perovskite (LHP) nanocrystals (NCs) are considered an emerging class of advanced functional materials with numerous outstanding optoelectronic characteristics. Despite their success in the field, their precision synthesis and fundamental mechanistic studies remain a challenge. The vast colloidal synthesis and processing parameters of LHP NCs in combination with the batch-to-batch and lab-to-lab variation problems further complicate their progress. In response, a self-driving fluidic micro-processor is presented for accelerated navigation through the complex synthesis and processing parameter space of NCs with multistage chemistries. The capability of the developed autonomous experimentation strategy is demonstrated for a time-, material-, and labor-efficient search through the sequential halide exchange and cation doping reactions of LHP NCs. Next, a machine learning model of the modular fluidic micro-processors is autonomously built for accelerated fundamental studies of the in-flow metal cation doping of LHP NCs. The surrogate model of the sequential halide exchange and cation doping reactions of LHP NCs is then utilized for five closed-loop synthesis campaigns with different target NC doping levels. The precise and intelligent NC synthesis and processing strategy, presented herein, can be further applied toward the autonomous discovery and development of novel impurity-doped NCs with applications in next-generation energy technologies.
引用
收藏
页数:13
相关论文
共 61 条
[21]   Machine Learning-Guided Discovery of Underlying Decisive Factors and New Mechanisms for the Design of Nonprecious Metal Electrocatalysts [J].
Ding, Rui ;
Chen, Yawen ;
Chen, Ping ;
Wang, Ran ;
Wang, Jiankang ;
Ding, Yiqin ;
Yin, Wenjuan ;
Liu, Yide ;
Li, Jia ;
Liu, Jianguo .
ACS CATALYSIS, 2021, 11 (15) :9798-9808
[22]  
Epps R.W., 2021, APPL PHYS REV, V8
[23]  
Epps RW, 2021, CHEM-US, V7, P2541
[24]   Accelerated AI development for autonomous materials synthesis in flow [J].
Epps, Robert W. ;
Volk, Amanda A. ;
Reyes, Kristofer G. ;
Abolhasani, Milad .
CHEMICAL SCIENCE, 2021, 12 (17) :6025-6036
[25]   Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot [J].
Epps, Robert W. ;
Bowen, Michael S. ;
Volk, Amanda A. ;
Abdel-Latif, Kameel ;
Han, Suyong ;
Reyes, Kristofer G. ;
Amassian, Aram ;
Abolhasani, Milad .
ADVANCED MATERIALS, 2020, 32 (30)
[26]   Toward Machine Learning-Enhanced High-Throughput Experimentation [J].
Eyke, Natalie S. ;
Koscher, Brent A. ;
Jensen, Klavs F. .
TRENDS IN CHEMISTRY, 2021, 3 (02) :120-132
[27]   Machine-learned potentials for next-generation matter simulations [J].
Friederich, Pascal ;
Hase, Florian ;
Proppe, Jonny ;
Aspuru-Guzik, Alan .
NATURE MATERIALS, 2021, 20 (06) :750-761
[28]   Progress in halide-perovskite nanocrystals with near-unity photoluminescence quantum yield [J].
Gualdron-Reyes, Andres F. ;
Masi, Sofia ;
Mora-Sero, Ivan .
TRENDS IN CHEMISTRY, 2021, 3 (06) :499-511
[29]   Machine-Learning-Driven Synthesis of Carbon Dots with Enhanced Quantum Yields [J].
Han, Yu ;
Tang, Bijun ;
Wang, Liang ;
Bao, Hong ;
Lu, Yuhao ;
Guan, Cuntai ;
Zhang, Liang ;
Le, Mengying ;
Liu, Zheng ;
Wu, Minghong .
ACS NANO, 2020, 14 (11) :14761-14768
[30]   Ligand Engineering for Mn2+ Doping Control in CsPbCl3 Perovskite Nanocrystals via a Quasi-Solid-Solid Cation Exchange Reaction [J].
Hills-Kimball, Katie Marie ;
Perez, Maria Jesus ;
Nagaoka, Yasutaka ;
Cai, Tong ;
Yang, Hanjun ;
Davis, Andrew Hunter ;
Zheng, Weiwei ;
Chen, Ou .
CHEMISTRY OF MATERIALS, 2020, 32 (06) :2489-2500