Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation

被引:72
作者
Sasaki, Miho [1 ]
Jojima, Toru [1 ]
Inui, Masayuki [1 ]
Yukawa, Hideaki [1 ]
机构
[1] Res Inst Innovat Technol Earth, Kyoto 6190292, Japan
关键词
Corynebacterium glutamicum; Xylitol; Pentose transporter; Simultaneous utilization; ENGINEERED ESCHERICHIA-COLI; FUEL ETHANOL-PRODUCTION; RARE SUGAR XYLITOL; D-XYLOSE; BIOTECHNOLOGICAL PRODUCTION; DEPRIVED CONDITIONS; CANDIDA-TROPICALIS; GENOME SEQUENCE; FRUCTOSE; BACTERIA;
D O I
10.1007/s00253-009-2372-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Wild-type Corynebacterium glutamicum produced 0.6 g l(-1) xylitol from xylose at a productivity of 0.01 g l(-1) h(-1) under oxygen deprivation. To increase this productivity, the pentose transporter gene (araE) from C. glutamicum ATCC31831 was integrated into the C. glutamicum R chromosome. Consequent disruption of its lactate dehydrogenase gene (ldhA), and expression of single-site mutant xylose reductase from Candida tenuis (CtXR (K274R)) resulted in recombinant C. glutamicum strain CtXR4 that produced 26.5 g l(-1) xylitol at 3.1 g l(-1) h(-1). To eliminate possible formation of toxic intracellular xylitol phosphate, genes encoding xylulokinase (XylB) and phosphoenolpyruvate-dependent fructose phosphotransferase (PTSfru) were disrupted to yield strain CtXR7. The productivity of strain CtXR7 increased 1.6-fold over that of strain CtXR4. A fed-batch 21-h CtXR7 culture in mineral salts medium under oxygen deprivation yielded 166 g l(-1) xylitol at 7.9 g l(-1) h(-1), representing the highest bacterial xylitol productivity reported to date.
引用
收藏
页码:1057 / 1066
页数:10
相关论文
共 42 条
[1]   Metabolic engineering for bioproduction of sugar alcohols [J].
Akinterinwa, Olubolaji ;
Khankal, Reza ;
Cirino, Patrick Carmen .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (05) :461-467
[2]   Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose [J].
Akinterinwa, Olubolaji ;
Cirino, Patrick C. .
METABOLIC ENGINEERING, 2009, 11 (01) :48-55
[3]  
[Anonymous], 1989, Molecular Cloning: A Laboratory
[4]   Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol-hydrogel [J].
Cunha, M. A. A. ;
Rodrigues, R. C. B. ;
Santos, J. C. ;
Converti, A. ;
da Silva, S. S. .
CURRENT MICROBIOLOGY, 2007, 54 (02) :91-96
[5]   Bacteria engineered for fuel ethanol production: current status [J].
Dien, BS ;
Cotta, MA ;
Jeffries, TW .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2003, 63 (03) :258-266
[6]   Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose [J].
Dominguez, H ;
Lindley, ND .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (10) :3878-3880
[7]   A rare sugar xylitol.: Part I:: the biochemistry and biosynthesis of xylitol [J].
Granstrom, Tom Birger ;
Izumori, Ken ;
Leisola, Matti .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (02) :277-281
[8]   A rare sugar xylitol.: Part II:: biotechnological production and future applications of xylitol [J].
Granstrom, Tom Birger ;
Izumori, Ken ;
Leisola, Matti .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (02) :273-276
[9]  
Hahn-Hagerdal B, 2001, Adv Biochem Eng Biotechnol, V73, P53
[10]   Towards industrial pentose-fermenting yeast strains [J].
Hahn-Hagerdal, Barbel ;
Karhumaa, Kaisa ;
Fonseca, Cesar ;
Spencer-Martins, Isabel ;
Gorwa-Grauslund, Marie F. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (05) :937-953