Maximum values of degree-based entropies of bipartite graphs

被引:6
作者
Dong, Yanni [1 ,2 ]
Qiao, Shengning [3 ]
Chen, Bing [4 ]
Wan, Pengfei [5 ]
Zhang, Shenggui [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Xian Budapest Joint Res Ctr Combinator, Xian 710129, Shaanxi, Peoples R China
[3] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
[4] Xian Univ Technol, Sch Sci, Dept Appl Math, Xian 710048, Shaanxi, Peoples R China
[5] Yulin Univ, Sch Math & Stat, Yulin 719000, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph entropy; Bipartite graph; Degree;
D O I
10.1016/j.amc.2021.126094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The degree-based entropy of a graph is defined as the Shannon entropy based on the information functional that associates the vertices of the graph with the corresponding degrees. We obtain the maximum value of the degree-based entropy among bipartite graphs with n vertices and and m edges by characterizing corresponding degree sequences. This implies the known result due to Cao et al. (2014) that the path attains the maximum degree-based entropy among trees with n vertices. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:7
相关论文
共 23 条
  • [1] GRAPHS WITH MAXIMAL NUMBER OF ADJACENT PAIRS OF EDGES
    AHLSWEDE, R
    KATONA, GOH
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 32 (1-2): : 97 - 120
  • [2] Source coding and graph entropies
    Alon, N
    Orlitsky, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1329 - 1339
  • [3] Bondy J.A., 2008, GTM
  • [4] Extremality of degree-based graph entropies
    Cao, Shujuan
    Dehmer, Matthias
    Shi, Yongtang
    [J]. INFORMATION SCIENCES, 2014, 278 : 22 - 33
  • [5] Extreme values of the sum of squares of degrees of bipartite graphs
    Cheng, T. C. Edwin
    Guo, Yonglin
    Zhang, Shenggui
    Du, Yongjun
    [J]. DISCRETE MATHEMATICS, 2009, 309 (06) : 1557 - 1564
  • [6] Maximizing the sum of the squares of the degrees of a graph
    Das, KC
    [J]. DISCRETE MATHEMATICS, 2004, 285 (1-3) : 57 - 66
  • [7] Das KC, 2017, MATCH-COMMUN MATH CO, V78, P259
  • [8] An upper bound on the sum of squares of degrees in a graph
    de Caen, D
    [J]. DISCRETE MATHEMATICS, 1998, 185 (1-3) : 245 - 248
  • [9] Dehmer M, 2016, Mathematical Foundations and Applications of Graph Entropy
  • [10] Information processing in complex networks: Graph entropy and information functionals
    Dehmer, Matthias
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 82 - 94