Seismic responses of monopile-supported offshore wind turbines in soft clays under scoured conditions

被引:28
|
作者
Jiang, Wenyu [1 ]
Lin, Cheng [1 ]
Sun, Min [1 ]
机构
[1] Univ Victoria, Dept Civil Engn, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Offshore wind turbine; Monopile; Soft clays; Scour hole; Soil stress history; Earthquake; SOIL-STRUCTURE INTERACTION; FRAGILITY ANALYSIS; SITE RESPONSE; EARTHQUAKE; FOUNDATION; PILES; BEHAVIOR; FREQUENCY; STRESS; DESIGN;
D O I
10.1016/j.soildyn.2020.106549
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
For the monopile-supported offshore wind turbine (OWT), scour can significantly affect the seismic responses of the structure. However, the combined effects of scour and earthquakes are not fully appreciated. This study proposed a new method to evaluate the post-scour seismic responses of monopole-supported OWTs, considering various scour-hole dimensions and soil stress-history changes due to different scour levels. Using the developed computer scripts, a parametric study was conducted, including 198 cases on a monopile-supported OWT in soft clays under different scoured conditions and six crustal earthquakes. The results showed that scour significantly changed the seismic responses of the selected OWT structure. Use of an overpredicted scour depth in the post-scour analysis underestimated the seismic response while simplifying local scour as general scour and ignoring soil stress history overestimated the seismic response of OWT. This research recommends in analysis the use of a cone-shape scour hole with side slope angle of 30 degrees.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Influence of Blade Flexibility on the Dynamic Behaviors of Monopile-Supported Offshore Wind Turbines
    Lai, Yongqing
    Li, Wei
    He, Ben
    Xiong, Gen
    Xi, Renqiang
    Wang, Piguang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (11)
  • [22] A simplified structural model for monopile-supported offshore wind turbines with tapered towers
    Ko, Yung-Yen
    RENEWABLE ENERGY, 2020, 156 : 777 - 790
  • [23] Importance of higher modes for dynamic soil structure interaction of monopile-supported offshore wind turbines
    Sah, Upendra Kumar
    Yang, Jun
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2024, 53 (06) : 2006 - 2031
  • [24] Evolution of the Seismic Response of Monopile-Supported Offshore Wind Turbines of Increasing Size from 5 to 15 MW including Dynamic Soil-Structure Interaction
    Medina, Cristina
    Alamo, Guillermo M.
    Quevedo-Reina, Roman
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (11)
  • [25] Identification of equivalent wind and wave loads for monopile-supported offshore wind turbines in operating condition
    Liang, Jun
    Fu, Yuhao
    Wang, Ying
    Ou, Jinping
    RENEWABLE ENERGY, 2024, 237
  • [26] The dynamics of monopile-supported Wind Turbines in nonlinear soil
    Alexander, N. A.
    Bhattacharya, S.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 3416 - 3422
  • [27] Dynamic Performance of Monopile-Supported Wind Turbines (MWTs) under Different Operating and Ground Conditions
    Xiao, Shaohui
    Liu, Hongjun
    Lin, Kun
    ENERGIES, 2024, 17 (01)
  • [28] Research on Verification and Prediction Methods of Soil Damping of Monopile-Supported Offshore Wind Turbines
    Su K.
    Zhu H.
    Zhou J.
    Lai X.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2024, 57 (02): : 165 - 173
  • [29] Probabilistic analysis of monopile-supported offshore wind turbine in clay
    Haldar, Sumanta
    Sharma, Jitendra
    Basu, Dipanjan
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2018, 105 : 171 - 183
  • [30] Foundation damping for monopile supported offshore wind turbines: A review
    Malekjafarian, Abdollah
    Jalilvand, Soroosh
    Doherty, Paul
    Igoe, David
    MARINE STRUCTURES, 2021, 77