Underground sewer pipe condition assessment based on convolutional neural networks

被引:125
|
作者
Hassan, Syed Ibrahim [1 ]
Dang, L. Minh [1 ]
Mehmood, Irfan [1 ]
Im, Suhyeon [1 ]
Choi, Changho [2 ]
Kang, Jaemo [2 ]
Park, Young-Soo [2 ]
Moon, Hyeonjoon [1 ]
机构
[1] Sejong Univ, Dept Comp Sci & Engn, Seoul, South Korea
[2] Korea Inst Civil Engn & Bldg Technol KICT, Ilsan, South Korea
关键词
Deep learning; Closed circuit television (CCTV); Convolutional neural network; Automation; Sewer assessment; Text recognition; Maximally Stable Extremal Regions (MSER); AUTOMATED DETECTION; DEFECT DETECTION; CLASSIFICATION; SEGMENTATION; RECOGNITION;
D O I
10.1016/j.autcon.2019.102849
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
y Surveys for assessing the condition of sewer pipeline systems are mainly based on video surveillance or CCTV, which is a time-consuming process that relies heavily on human labor because an operator has to watch videos, looks for defects and decides the defect's type manually. Previous research required suitable handcrafted features that were inefficient in analyzing sewer pipeline condition, so a robust and efficient framework is crucial as it eliminates the time-consuming tasks and helps the operator access condition of sewer systems more efficiently. This study proposes a defect classification system on CCTV inspection videos based on convolutional neural networks (CNN). The dataset was manually constructed and validated by extracting the images from CCTV videos, and the images were labeled according to six predefined defects. The CNN model was fine-tuned before training, and trained on a total of 47,072 images (256 x 256 pixels). The highest recorded accuracy was at 96.33%. As a result, the presented framework will motivate the finding of a more robust model that automatically and precisely evaluates the condition of sewer pipeline systems using CCTV and encourages the integration of the proposed model in real applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Assessment of the Condition of Pipelines Using Convolutional Neural Networks
    Vankov, Yuri
    Rumyantsev, Aleksey
    Ziganshin, Shamil
    Politova, Tatyana
    Minyazev, Rinat
    Zagretdinov, Ayrat
    ENERGIES, 2020, 13 (03)
  • [2] Vision-based automated crack detection using convolutional neural networks for condition assessment of infrastructure
    Rao, Aravinda S.
    Tuan Nguyen
    Palaniswami, Marimuthu
    Tuan Ngo
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2021, 20 (04): : 2124 - 2142
  • [3] Urban flood susceptibility assessment based on convolutional neural networks
    Zhao, Gang
    Pang, Bo
    Xu, Zongxue
    Peng, Dingzhi
    Zuo, Depeng
    JOURNAL OF HYDROLOGY, 2020, 590 (590)
  • [4] Recent advances in convolutional neural networks
    Gu, Jiuxiang
    Wang, Zhenhua
    Kuen, Jason
    Ma, Lianyang
    Shahroudy, Amir
    Shuai, Bing
    Liu, Ting
    Wang, Xingxing
    Wang, Gang
    Cai, Jianfei
    Chen, Tsuhan
    PATTERN RECOGNITION, 2018, 77 : 354 - 377
  • [5] Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks
    Kumar, Srinath S.
    Abraham, Dulcy M.
    Jahanshahi, Mohammad R.
    Iseley, Tom
    Starr, Justin
    AUTOMATION IN CONSTRUCTION, 2018, 91 : 273 - 283
  • [6] Hyperspectral Band Selection Using Attention-Based Convolutional Neural Networks
    Lorenzo, Pablo Ribalta
    Tulczyjew, Lukasz
    Marcinkiewicz, Michal
    Nalepa, Jakub
    IEEE ACCESS, 2020, 8 : 42384 - 42403
  • [7] An abnormality detection of retinal fundus images by deep convolutional neural networks
    Murugan, R.
    Roy, Parthapratim
    Singh, Utkarsh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (33-34) : 24949 - 24967
  • [8] A systematic review of convolutional neural network-based structural condition assessment techniques
    Sony, Sandeep
    Dunphy, Kyle
    Sadhu, Ayan
    Capretz, Miriam
    ENGINEERING STRUCTURES, 2021, 226
  • [9] Comparative analysis of five convolutional neural networks for landslide susceptibility assessment
    Ge, Yunfeng
    Liu, Geng
    Tang, Huiming
    Zhao, Binbin
    Xiong, Chengren
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2023, 82 (10)
  • [10] Landmark-based multi-region ensemble convolutional neural networks for bone age assessment
    Cao, Shaomeng
    Chen, Zhiye
    Li, Congsheng
    Lv, Chuanfeng
    Wu, Tongning
    Lv, Bin
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2019, 29 (04) : 457 - 464