A Prediction Method of Cable Crosstalk in Electronic Systems with Ensemble Learning

被引:1
|
作者
Yang, Xu [1 ]
Zhou, Dejian [1 ]
Song, Wei [1 ]
She, Yulai [2 ]
Chen, Xiaoyong [2 ]
机构
[1] Xidian Univ, Sch Mech Elect Engn, Xian 710071, Peoples R China
[2] Guilin Univ Elect Technol, Sch Elect & Mech Engn, Guilin 541004, Peoples R China
关键词
Electronic systems; Cable; Prediction; Crosstalk; Ensemble learning;
D O I
10.1007/s13369-021-06002-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Crosstalk between cables can seriously impede the performance of electronic systems. Cable layouts are becoming increasingly complex, and crosstalk is influenced by many factors, so it is difficult for existing crosstalk prediction methods to accurately establish direct relationships between cable near-end crosstalk and its numerous influencing factors. In order to identify the electromagnetic compatibility (EMC) problems of electronic systems in the early stage of cable layout design to guide the optimization of cable layout, the stacking-LSRM multi-stage ensemble learning method was proposed. Using this method, a cable crosstalk prediction model with high prediction accuracy and good robustness can be quickly established programmatically. Two examples were used to verify the effectiveness of the proposed method. In each example, the overall performance of the obtained optimal ensemble learning prediction model was quite good, and the effectiveness of the proposed method was verified by comparison with the prediction models established by existing methods.
引用
收藏
页码:2987 / 3000
页数:14
相关论文
共 50 条
  • [1] A Prediction Method of Cable Crosstalk in Electronic Systems with Ensemble Learning
    Xu Yang
    Dejian Zhou
    Wei Song
    Yulai She
    Xiaoyong Chen
    Arabian Journal for Science and Engineering, 2022, 47 : 2987 - 3000
  • [2] A Cable Layout Optimization Method for Electronic Systems Based on Ensemble Learning and Improved Differential Evolution Algorithm
    Yang, Xu
    Zhou, Dejian
    Song, Wei
    She, Yulai
    Chen, Xiaoyong
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2021, 63 (06) : 1962 - 1971
  • [3] Extension of the "Equivalent Cable Bundle Method" for Modeling Crosstalk of Complex Cable Bundles
    Li, Zhuo
    Shao, Zhi Jiang
    Ding, Ji
    Niu, Zhen Yi
    Gu, Chang Qing
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2011, 53 (04) : 1040 - 1049
  • [4] Prediction of Endometrial Carcinoma Using the Combination of Electronic Health Records and an Ensemble Machine Learning Method
    Wang, Wenwen
    Xu, Yang
    Yuan, Suzhen
    Li, Zhiying
    Zhu, Xin
    Zhou, Qin
    Shen, Wenfeng
    Wang, Shixuan
    FRONTIERS IN MEDICINE, 2022, 9
  • [5] Ensemble learning method for the prediction of breast cancer recurrence
    Almuhaidib, Daad Abdullah
    Shaiba, Hadil Ahmed
    Alharbi, Najla Ghazi
    Alotaibi, Sara Muhammad
    Albusayyis, Fatima Moteb
    Alzaid, Mashael Abdulalim
    Almadhi, Reem Mohammed
    2018 1ST INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS' 2018), 2018,
  • [6] Injection Molding Part Size Prediction Method Based on Stacking Ensemble Learning
    Song J.
    Wang W.
    Li D.
    Liang J.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2022, 50 (06): : 19 - 26
  • [7] The Rotate Stress of Steam Turbine prediction method based on Stacking Ensemble Learning
    Liang, Haoran
    Song, Lei
    Li, Xuzhi
    201919TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH ASSURANCE SYSTEMS ENGINEERING (HASE 2019), 2019, : 146 - 149
  • [8] An Ensemble Learning Method for Robot Electronic Nose with Active Perception
    Li, Shengming
    Feng, Lin
    Ge, Yunfei
    Zhu, Li
    Zhao, Liang
    SENSORS, 2021, 21 (11)
  • [9] Ensemble Learning for Power Systems TTC Prediction With Wind Farms
    Qiu, Gao
    Liu, Junyong
    Liu, Youbo
    Liu, Tingjian
    Mu, Gang
    IEEE ACCESS, 2019, 7 : 16572 - 16583
  • [10] A stacked ensemble learning method for customer lifetime value prediction
    Asadi, Nader
    Kazerooni, Mehrdad
    KYBERNETES, 2024, 53 (07) : 2342 - 2360