On-chip training of memristor crossbar based multi-layer neural networks

被引:77
作者
Hasan, Raqibul [1 ]
Taha, Tarek M. [1 ]
Yakopcic, Chris [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
来源
MICROELECTRONICS JOURNAL | 2017年 / 66卷
基金
美国国家科学基金会;
关键词
Neural networks; Memristor crossbars; Training; On-chip training; SYNAPSE; CIRCUIT;
D O I
10.1016/j.mejo.2017.05.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristor crossbar arrays carry out multiply-add operations in parallel in the analog domain, and so can enable neuromorphic systems with high throughput at low energy and area consumption. On-chip training of these systems have the significant advantage of being able to get around device variability and faults. This paper presents on-chip training circuits for multi-layer neural networks implemented using a single crossbar per layer and two memristors per synapse. Using two memristors per synapse provides double the synaptic weight precision when compared to a design that uses only one memristor per synapse. Proposed on-chip training system utilizes the back propagation (BP) algorithm for synaptic weight update. Due to the use of two memristors per synapse, we utilize a novel technique for error back propagation. We evaluated the training of the system with some nonlinearly separable datasets through detailed SPICE simulations which take crossbar wire resistance and sneak-paths into consideration. Our results show that in the proposed design, the crossbars consume about 9x less power than single memristor per synapse design.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 28 条
[1]   Memristor Bridge Synapse-Based Neural Network and Its Learning [J].
Adhikari, Shyam Prasad ;
Yang, Changju ;
Kim, Hyongsuk ;
Chua, Leon O. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (09) :1426-1435
[2]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[3]  
[Anonymous], IEEE INT JOINT C NEU
[4]  
[Anonymous], 2008, IEEE INT JOINT C NEU
[5]  
Belhadj B., 2013, CONTINUOUS REAL WORL
[6]  
Chabi D., 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), P137, DOI 10.1109/NANOARCH.2011.5941495
[7]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+
[8]   NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory [J].
Dong, Xiangyu ;
Xu, Cong ;
Xie, Yuan ;
Jouppi, Norman P. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2012, 31 (07) :994-1007
[9]  
Furber S. B., 2006, P AISB WORKSH GC5 AR, V2, P29
[10]   Nanoscale Memristor Device as Synapse in Neuromorphic Systems [J].
Jo, Sung Hyun ;
Chang, Ting ;
Ebong, Idongesit ;
Bhadviya, Bhavitavya B. ;
Mazumder, Pinaki ;
Lu, Wei .
NANO LETTERS, 2010, 10 (04) :1297-1301