Understanding Long Noncoding RNA and Chromatin Interactions: What We Know So Far

被引:79
作者
Mishra, Kankadeb [1 ,2 ]
Kanduri, Chandrasekhar [1 ]
机构
[1] Univ Gothenburg, Inst Biomed, Dept Med Biochem & Cell Biol, S-40530 Gothenburg, Sweden
[2] Mem Sloan Kettering Canc Ctr, Dept Cell Biol, Rockefeller Res Lab, 430 East 67th St,RRL 445, New York, NY 10065 USA
基金
瑞典研究理事会;
关键词
lncrna; chromatin; chromatin RNA; long noncoding RNA; gene regulation; RNA-chromatin interactions; REPEAT-CONTAINING RNA; R-LOOP FORMATION; ANTISENSE TRANSCRIPTION; WIDE IDENTIFICATION; ACTIVE CHROMATIN; BINDING PROTEIN; ENHANCER RNAS; CIRCULAR RNAS; X-CHROMOSOME; MAPS REVEAL;
D O I
10.3390/ncrna5040054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the evolution of technologies that deal with global detection of RNAs to probing of lncRNA-chromatin interactions and lncRNA-chromatin structure regulation, we have been updated with a comprehensive repertoire of chromatin interacting lncRNAs, their genome-wide chromatin binding regions and mode of action. Evidence from these new technologies emphasize that chromatin targeting of lncRNAs is a prominent mechanism and that these chromatin targeted lncRNAs exert their functionality by fine tuning chromatin architecture resulting in an altered transcriptional readout. Currently, there are no unifying principles that define chromatin association of lncRNAs, however, evidence from a few chromatin-associated lncRNAs show presence of a short common sequence for chromatin targeting. In this article, we review how technological advancements contributed in characterizing chromatin associated lncRNAs, and discuss the potential mechanisms by which chromatin associated lncRNAs execute their functions.
引用
收藏
页数:28
相关论文
共 164 条
[1]   Mammalian Mitochondrial ncRNA Database [J].
Anandakumar, Shanmugam ;
Vijayakumar, Saravanan ;
Arumugam, Nagarajan ;
Gromiha, M. Michael .
BIOINFORMATION, 2015, 11 (11) :512-513
[2]  
[Anonymous], FUNCTIONAL CLASSIFIC
[3]   Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends [J].
Azzalin, Claus M. ;
Reichenbach, Patrick ;
Khoriauli, Lela ;
Giulotto, Elena ;
Lingner, Joachim .
SCIENCE, 2007, 318 (5851) :798-801
[4]   Genomic Imprinting in Mammals [J].
Barlow, Denise P. ;
Bartolomei, Marisa S. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2014, 6 (02)
[5]   THE MOUSE INSULIN-LIKE GROWTH-FACTOR TYPE-2 RECEPTOR IS IMPRINTED AND CLOSELY LINKED TO THE TME LOCUS [J].
BARLOW, DP ;
STOGER, R ;
HERRMANN, BG ;
SAITO, K ;
SCHWEIFER, N .
NATURE, 1991, 349 (6304) :84-87
[6]   PARENTAL IMPRINTING OF THE MOUSE H19 GENE [J].
BARTOLOMEI, MS ;
ZEMEL, S ;
TILGHMAN, SM .
NATURE, 1991, 351 (6322) :153-155
[7]   Genetic control of biochemical reactions in neurospora [J].
Beadle, GW ;
Tatum, EL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :499-506
[8]  
Belak ZR, 2008, BIOCHEM CELL BIOL, V86, P31, DOI [10.1139/O07-155, 10.1139/o07-155]
[9]   Assembly of the Yin Yang 1 transcription factor into messenger ribonucleoprotein particles requires direct RNA binding activity [J].
Belak, Zachery R. ;
Ovsenek, Nick .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (52) :37913-37920
[10]   Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts [J].
Bell, Jason C. ;
Jukam, David ;
Teran, Nicole A. ;
Risca, Viviana I. ;
Smith, Owen K. ;
Johnson, Whitney L. ;
Skotheim, Jan M. ;
Greenleaf, William James ;
Straight, Aaron F. .
ELIFE, 2018, 7