Effects of Anti-reflection Coating and Plasmonic Nanoparticle on the Performance Characteristics of Three Terminal Bipolar Transistor Architecture Based Solar Cell

被引:0
作者
Das, Puja [1 ]
Rahat, Md Tarake Emam [1 ]
Mamun, Md Asaduz Zaman [1 ]
机构
[1] Shahjalal Univ Sci & Technol SUST, Dept Elect & Elect Engn, Sylhet 3114, Bangladesh
来源
PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE) | 2020年
关键词
Solar Cell; kesterite materials; plasmonic nanoparticle; anti-reflection coating; tunnel junction;
D O I
10.1109/ICECE51571.2020.9393062
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The unavoidable complexities of multi-junction solar cell associated with surface recombination at the tunneling junction interfaces limit the applications of these solar cells. In this scenario, a transistor architecture based solar cell can overcome the limitation of surface recombination due to the absence of tunnel junction interfaces. The objective of this study is to enhance the efficiency of three-terminal heterojunction bipolar transistor architecture based solar cells (3T-HBTSC) and to move further towards green solar cells using kesterite materials. In this study, the performance parameters of 3T-HBTSC are thoroughly investigated to report the optimum size of anti-reflection (AR) layers and nanoparticles considering three configurations, (i) a single layer anti-reflection (AR) coating, (ii) double layer anti-reflection coating and (iii) plasmonic nanoparticle based 3T-HBTSC. The reflectivity of AR coatings and light trapping principles of plasmonic nanoparticles are the prime techniques upon which we relied to improve solar cell efficiency. We have found that the performance of double- layer anti-reflection coating (DLARC) configuration exceeds the record of the existing HBTSC with open circuit voltage of 736 mV, short circuit current density of 39.86 mA/cm(2), efficiency of 22.41% and 76.41% fill factor.
引用
收藏
页码:45 / 48
页数:4
相关论文
共 13 条
[1]  
Borchert H, 2014, SPRINGER SERIES MAT
[2]  
Dhungel SK, 2006, J KOREAN PHYS SOC, V49, P885
[3]   Plasmonic enhanced solar cells: Summary of possible strategies and recent results [J].
Enrichi, F. ;
Quandt, A. ;
Righini, G. C. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2433-2439
[4]   An improvement on the conversion efficiency of Si/CZTS solar cells by LSPR effect of embedded plasmonic Au nanoparticles [J].
Gezgin, Serap Yigit ;
Kilic, Hamdi Sukur .
OPTICAL MATERIALS, 2020, 101
[5]   How small amounts of Ge modify the formation pathways and crystallization of kesterites [J].
Giraldo, S. ;
Saucedo, E. ;
Neuschitzer, M. ;
Oliva, F. ;
Placidi, M. ;
Alcobe, X. ;
Izquierdo-Roca, V. ;
Kim, S. ;
Tampo, H. ;
Shibata, H. ;
Perez-Rodriguez, A. ;
Pistor, P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (03) :582-593
[6]   Industrial perspectives on earth abundant, multinary thin film photovoltaics [J].
Haight, Richard ;
Gershon, Talia ;
Gunawan, Oki ;
Antunez, Priscilla ;
Bishop, Douglas ;
Lee, Yun Seog ;
Gokmen, Tayfun ;
Sardashti, Kasra ;
Chagarov, Evgueni ;
Kummel, Andrew .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (03)
[7]  
Huang QP, 2017, NANOSTRUCTURED SOLAR CELLS, P137, DOI 10.5772/65388
[8]   Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion [J].
Marti, A. ;
Luque, A. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Operation of the Three Terminal Heterojunction Bipolar Transistor Solar Cell [J].
Marti, Antonio ;
Antolin, Elisa ;
Garcia-Linares, Pablo ;
Lopez, Esther ;
Villa, Juan ;
Ramiro, Inigo .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 14 NO 10, 2017, 14 (10)
[10]  
Oldenburg StephenJ., 2014, SILVER NANOPARTICLES