Hot electron photoemission in metal-semiconductor structures aided by resonance tunneling

被引:5
|
作者
Shuklin, Fedor A. [1 ,2 ]
Smetanin, Igor V. [2 ]
Protsenko, Igor E. [2 ]
Khurgin, Jacob B. [3 ]
Nikonorov, Nikolay V. [4 ]
Uskov, Alexander V. [2 ]
机构
[1] Univ Southern Denmark, SDU Nano Opt, Campusvej 55, DK-5230 Odense M, Denmark
[2] Russian Acad Sci, PN Lebedev Phys Inst, Leninsky Pr 53, Moscow 119991, Russia
[3] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[4] ITMO Univ, Kronverskiy Av 49, St Petersburg 197101, Russia
基金
俄罗斯科学基金会;
关键词
SURFACE;
D O I
10.1063/5.0048804
中图分类号
O59 [应用物理学];
学科分类号
摘要
Enhancement of the surface photoemission from metal into semiconductor by resonance tunneling of photoexcited electrons through (quasi-) discrete level in quantum well, located within Schottky barrier of the metal-semiconductor interface, is studied theoretically taking into account the difference between the electron masses in metal and semiconductor. It is shown, in particular, that resonance tunneling through the discrete level can lead to the redshift of the threshold wavelength of surface photoeffect, higher slope linear growth in photocurrent near the threshold (in contrast to quadratic growth, i.e., Fowler's law), and the possibility to increase substantially the photoemission efficiency similarly to recent experimental results on hot carrier generation in plasmonic structures with a discrete energy level at metal interface. The difference in the effective masses is shown to significantly affect the results. Double-barrier tunneling structures with resonant tunneling may become attractive for applications in photochemistry and in plasmonic photodetectors in near IR and middle IR regions of the spectrum.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] CATHODOLUMINESCENCE SPECTROSCOPY OF METAL-SEMICONDUCTOR INTERFACE STRUCTURES
    BRILLSON, LJ
    VITURRO, RE
    SHAW, JL
    RICHTER, HW
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (03): : 1437 - 1445
  • [42] Extraordinary optoconductance in metal-semiconductor hybrid structures
    Wieland, KA
    Wang, Y
    Ram-Mohan, LR
    Solin, SA
    Girgis, AM
    APPLIED PHYSICS LETTERS, 2006, 88 (05) : 1 - 3
  • [43] Heat transfer modeling in metal-semiconductor structures
    Khlyap, G
    Sydorchuk, P
    ASDAM '02, CONFERENCE PROCEEDINGS, 2002, : 219 - 222
  • [44] PHONON STRUCTURES IN METAL-SEMICONDUCTOR TUNNEL JUNCTIONS
    GUETIN, P
    SCHREDER, G
    SOLID STATE COMMUNICATIONS, 1970, 8 (04) : 291 - &
  • [45] PHOTOELECTRIC YIELD SPECTRA OF METAL-SEMICONDUCTOR STRUCTURES
    ENGSTROM, O
    PETTERSSON, H
    SERNELIUS, B
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1986, 95 (02): : 691 - 701
  • [46] Extraordinary electroconductance in metal-semiconductor hybrid structures
    Wang, Yun
    Newaz, A. K. M.
    Wu, Jian
    Solin, S. A.
    Kavasseri, V. R.
    Jin, N.
    Ahmed, I. S.
    Adesida, I.
    APPLIED PHYSICS LETTERS, 2008, 92 (26)
  • [47] ELECTRON-EMISSION AT METAL-SEMICONDUCTOR JUNCTIONS
    FORIER, RP
    MORRE, RD
    HIERNAUT, JP
    VANCAKEN.J
    VACUUM, 1972, 22 (11) : 531 - 534
  • [48] METAL-SEMICONDUCTOR WHISKER STRUCTURES (MODEL OF GROWTH).
    Fistul', V.I.
    Klepstyn, V.F.
    Soviet physics. Technical physics, 1981, 26 (11): : 1384 - 1386
  • [49] ELECTRONIC STATES OF SEMICONDUCTOR METAL-SEMICONDUCTOR QUANTUM WELL STRUCTURES
    HUBERMAN, ML
    MASERJIAN, J
    SUPERLATTICES AND MICROSTRUCTURES, 1988, 4 (4-5) : 555 - 558
  • [50] Interface effects in ZnO metal-insulator-semiconductor and metal-semiconductor structures
    Frenzel, H.
    von Wenckstem, H.
    Lajn, A.
    Brandt, M.
    Biehne, G.
    Hochmuth, H.
    Lorenz, M.
    Grundmann, M.
    PHYSICS OF SEMICONDUCTORS, 2009, 1199 : 469 - 470