Dynamical analysis of a nonlinear model for glucose-insulin system incorporating delays and β-cells compartment

被引:20
作者
Chuedoung, Meechoke [1 ]
Sarika, Warunee [1 ]
Lenbury, Yongwimon [1 ]
机构
[1] Mahidol Univ, Dept Math, Bangkok 10400, Thailand
关键词
Delay differential equations; Glucose-insulin feedback mechanism; beta-cel; Nonlinear mathematical model; ULTRADIAN OSCILLATIONS; MATHEMATICAL-MODEL; PLASMA-GLUCOSE; TOLERANCE TEST; SECRETION; KINETICS; RESISTANCE; RESPONSES; INFUSION;
D O I
10.1016/j.na.2009.01.129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical model of the glucose-insulin control mechanism which incorporates the role of beta-cells and time-delays is investigated. An analysis of the model is carried out by relying on the Hopf bifurcation theory in order to derive the conditions under which the system permits different dynamical behavior including the existence of periodic solutions. A genetic algorithm is utilized to find an optimal set of parametric values for which the simulated curve best fits our experimental glycemia data. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1048 / E1058
页数:11
相关论文
共 36 条
[1]   MATHEMATICAL MODEL OF GLUCOSE-TOLERANCE TEST [J].
ACKERMAN, E ;
MCGUCKIN, WF ;
ROSEVEAR, JW .
PHYSICS IN MEDICINE AND BIOLOGY, 1964, 9 (02) :203-&
[2]  
BAJAJ JS, 1987, J THEOR BIOL, V129, P491
[3]   Asymptotic properties of a delay differential equation model for the interaction of glucose with plasma and interstitial insulin [J].
Bennett, DL ;
Gourley, SA .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 151 (01) :189-207
[4]   The evolution of β-cell dysfunction and insulin resistance in type 2 diabetes [J].
Bergman, RN ;
Finegood, DT ;
Kahn, SE .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2002, 32 :35-45
[5]   Glucose diffusion in pancreatic islets of Langerhans [J].
Bertram, R ;
Pernarowski, M .
BIOPHYSICAL JOURNAL, 1998, 74 (04) :1722-1731
[6]  
CAUTER E, 1989, J CLIN ENDOCR METAB, V69, P604
[7]   Numerical bifurcation analysis of delay differential equations arising from physiological modeling [J].
Engelborghs, K ;
Lemaire, V ;
Bélair, J ;
Roose, D .
JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 42 (04) :361-385
[8]  
Forrest E., INSULIN GROWTH HORMO
[9]  
GAETANO AD, 2000, J MATH BIOL, V40, P136
[10]   A MATHEMATICAL-MODEL FOR INSULIN KINETICS .3. SENSITIVITY ANALYSIS OF THE MODEL [J].
GEEVAN, CP ;
RAO, JS ;
RAO, GS ;
BAJAJ, JS .
JOURNAL OF THEORETICAL BIOLOGY, 1990, 147 (02) :255-263