Wavelet block thresholding for density estimation in the presence of bias

被引:35
作者
Chesneau, Christophe [1 ]
机构
[1] Univ Caen Basse Normandie, Lab Math Nicolas Oresme, F-14032 Caen, France
关键词
Adaptivity; Besov space; Block thresholding; Density estimation; Bias; Wavelets; MINIMAX;
D O I
10.1016/j.jkss.2009.03.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the density estimation problem from i.i.d, biased observations. The bias function is assumed to be bounded from above and below. A new adaptive estimator based on wavelet block thresholding is constructed. We evaluate these theoretical performances via the minimax approach under the L-P risk with p >= 1 (not only for p = 2) over a wide range of function classes: the Besov classes, B-pi,r(s) (with no particular restriction on the parameters pi and r). Under this general framework, we prove that it attains near optimal rates of convergence. The theory is illustrated by a numerical example. (C) 2009 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 24 条
[1]  
BRUNEL E, 2007, TEST IN PRESS
[2]  
Buckheit J. B., 1995, WAVELETS STAT
[3]  
Buckland S. T., 1993, Distance sampling: estimating abundance of biological populations.
[4]  
Cai TT, 2002, STAT SINICA, V12, P1241
[5]  
Chesneau C, 2008, STAT SINICA, V18, P1007
[6]   Block thresholding for density estimation: local and global adaptivity [J].
Chicken, E ;
Cai, TT .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (01) :76-106
[7]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[8]  
Cox D. R., 1969, New developments in survey sampling, P506
[9]  
Devroye L., 1985, Nonparametric density estimation: the L 1 view
[10]   Density estimation for biased data [J].
Efromovich, S .
ANNALS OF STATISTICS, 2004, 32 (03) :1137-1161