The RNA Modification N6-methyladenosine and Its Implications in Human Disease

被引:143
作者
Batista, Pedro J. [1 ]
机构
[1] NCI, Cell Biol Lab, Ctr Canc Res, NIH, Bldg 37, Bethesda, MD 20892 USA
关键词
ARABIDOPSIS MESSENGER-RNA; ROUS-SARCOMA-VIRUS; NUCLEAR-RNA; FTO GENE; DEMETHYLASE ALKBH5; SEQUENCE SPECIFICITY; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; METHYLATION; N6-METHYLADENOSINE;
D O I
10.1016/j.gpb.2017.03.002
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Impaired gene regulation lies at the heart of many disorders, including developmental diseases and cancer. Furthermore, the molecular pathways that control gene expression are often the target of cellular parasites, such as viruses. Gene expression is controlled through multiple mechanisms that are coordinated to ensure the proper and timely expression of each gene. Many of these mechanisms target the life cycle of the RNA molecule, from transcription to translation. Recently, another layer of regulation at the RNA level involving RNA modifications has gained renewed interest of the scientific community. The discovery that N-6-methyladenosine (m(6)A), a modification present in mRNAs and long noncoding RNAs, can be removed by the activity of RNA demethylases, launched the field of epitranscriptomics; the study of how RNA function is regulated through the addition or removal of post-transcriptional modifications, similar to strategies used to regulate gene expression at the DNA and protein level. The abundance of RNA post-transcriptional modifications is determined by the activity of writer complexes (methylase) and eraser (RNA demethylase) proteins. Subsequently, the effects of RNA modifications materialize as changes in RNA structure and/or modulation of interactions between the modified RNA and RNA binding proteins or regulatory RNAs. Disruption of these pathways impairs gene expression and cellular function. This review focuses on the links between the RNA modification m(6)A and its implications in human diseases.
引用
收藏
页码:154 / 163
页数:10
相关论文
共 111 条
[1]   MODIFIED NUCLEOSIDES AND BIZARRE 5'-TERMINI IN MOUSE MYELOMA MESSENGER-RNA [J].
ADAMS, JM ;
CORY, S .
NATURE, 1975, 255 (5503) :28-33
[2]   RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast [J].
Agarwala, Sudeep D. ;
Blitzblau, Hannah G. ;
Hochwagen, Andreas ;
Fink, Gerald R. .
PLOS GENETICS, 2012, 8 (06)
[3]   Coordination of m6A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming [J].
Aguilo, Francesca ;
Zhang, Fan ;
Sancho, Ana ;
Fidalgo, Miguel ;
Di Cecilia, Serena ;
Vashisht, Ajay ;
Lee, Dung-Fang ;
Chen, Chih-Hung ;
Rengasamy, Madhumitha ;
Andino, Blanca ;
Jahouh, Farid ;
Roman, Angel ;
Krig, Sheryl R. ;
Wang, Rong ;
Zhang, Weijia ;
Wohlschlegel, James A. ;
Wang, Jianlong ;
Walsh, Martin J. .
CELL STEM CELL, 2015, 17 (06) :689-704
[4]   Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation [J].
Aik, WeiShen ;
Scotti, John S. ;
Choi, Hwanho ;
Gong, Lingzhi ;
Demetriades, Marina ;
Schofield, Christopher J. ;
McDonough, Michael A. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (07) :4741-4754
[5]   HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events [J].
Alarcon, Claudio R. ;
Goodarzi, Hani ;
Lee, Hyeseung ;
Liu, Xuhang ;
Tavazoie, Saeed ;
Tavazoie, Sohail F. .
CELL, 2015, 162 (06) :1299-1308
[6]   3-DEAZAADENOSINE, AN INHIBITOR OF ADENOSYLHOMOCYSTEINE HYDROLASE, INHIBITS REPRODUCTION OF ROUS-SARCOMA VIRUS AND TRANSFORMATION OF CHICK-EMBRYO CELLS [J].
BADER, JP ;
BROWN, NR ;
CHIANG, PK ;
CANTONI, GL .
VIROLOGY, 1978, 89 (02) :494-505
[7]   m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells [J].
Batista, Pedro J. ;
Molinie, Benoit ;
Wang, Jinkai ;
Qu, Kun ;
Zhang, Jiajing ;
Li, Lingjie ;
Bouley, Donna M. ;
Lujan, Ernesto ;
Haddad, Bahareh ;
Daneshvar, Kaveh ;
Carter, Ava C. ;
Flynn, Ryan A. ;
Zhou, Chan ;
Lim, Kok-Seong ;
Dedon, Peter ;
Wernig, Marius ;
Mullen, Alan C. ;
Xing, Yi ;
Giallourakis, Cosmas C. ;
Chang, Howard Y. .
CELL STEM CELL, 2014, 15 (06) :707-719
[8]   LOCALIZATION OF N6-METHYLADENOSINE IN ROUS-SARCOMA VIRUS GENOME [J].
BEEMON, K ;
KEITH, J .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 113 (01) :165-179
[9]   Adenosine methylation in Arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects [J].
Bodi, Zsuzsanna ;
Zhong, Silin ;
Mehra, Surbhi ;
Song, Jie ;
Graham, Neil ;
Li, Hongying ;
May, Sean ;
Fray, Rupert George .
FRONTIERS IN PLANT SCIENCE, 2012, 3
[10]   Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations [J].
Boissel, Sarah ;
Reish, Orit ;
Proulx, Karine ;
Kawagoe-Takaki, Hiroko ;
Sedgwick, Barbara ;
Yeo, Giles S. H. ;
Meyre, David ;
Golzio, Christelle ;
Molinari, Florence ;
Kadhom, Noman ;
Etchevers, Heather C. ;
Saudek, Vladimir ;
Farooqi, I. Sadaf ;
Froguel, Philippe ;
Lindahl, Tomas ;
O'Rahilly, Stephen ;
Munnich, Arnold ;
Colleaux, Laurence .
AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 85 (01) :106-111