Liquid metal embrittlement of a dual-phase Al0.7CoCrFeNi high-entropy alloy exposed to oxygen-saturated lead-bismuth eutectic

被引:36
作者
Gong, Xing [1 ]
Xiang, Congying [2 ]
Auger, Thierry [3 ]
Chen, Jiajun [1 ]
Liang, Xiaocong [2 ]
Yu, Zhiyang [2 ]
Short, Michael P. [4 ]
Song, Min [5 ]
Yin, Yuan [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Adv Nucl Energy Res Team, Shenzhen 518060, Peoples R China
[2] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China
[3] HESAM Univ, PIMM, Arts & Metiers ParisTech, CNRS,Cnam, 151 Blvd Hop, F-75013 Paris, France
[4] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
LBE; Liquid metal embrittlement; High-entropy alloys; Cracking; Phase boundary wetting; AUSTENITIC STEELS; MECHANICAL-PROPERTIES; CRACK-PROPAGATION; FLOWING LBE; DEGREES-C; CORROSION; ISSUES; IRRADIATION; BEHAVIOR; 316L;
D O I
10.1016/j.scriptamat.2020.113652
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper reports a new liquid metal embrittlement (LME) system in which a dual-phase Al0.7CoCrFeNi (equimolar fraction) high-entropy alloy (HEA) is embrittled by lead-bismuth eutectic (LBE) at 350 and 500 degrees C. At 350 degrees C, (Ni, Al)-rich BCC phase is embrittled, leading to intragrain cracking within this phase, while the predominant cracking mode changes to BCC/FCC phase boundary decohesion at 500 degrees C. At both temperatures, cracks are rarely seen in the (Co, Cr, Fe)-rich FCC phase, indicating that this phase is immune to LME. Furthermore, the results suggest a transition from an adsorption-dominated LME mechanism at 350 degrees C to a phase boundary wetting-dominated LME mechanism at 500 degrees C. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Strengthening mechanisms in high entropy alloys: Fundamental issues [J].
Basu, Indranil ;
De Hosson, Jeff Th M. .
SCRIPTA MATERIALIA, 2020, 187 :148-156
[2]   Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys [J].
Basu, Indranil ;
Ocelik, Vaclav ;
De Hosson, Jeff Th M. .
ACTA MATERIALIA, 2018, 150 :104-116
[3]   High entropy alloys: Key issues under passionate debate [J].
Biswas, Krishanu ;
Yeh, Jien-Wei ;
Bhattacharjee, Pinaki P. ;
DeHosson, Jeff Th. M. .
SCRIPTA MATERIALIA, 2020, 188 :54-58
[4]   Microstructure of liquid metal embrittlement cracks on Zn-coated 22MnB5 press-hardened steel [J].
Cho, Lawrence ;
Kang, Heeseung ;
Lee, Changwook ;
De Cooman, Bruno C. .
SCRIPTA MATERIALIA, 2014, 90-91 :25-28
[5]   Bismuth-induced embrittlement of copper grain boundaries [J].
Duscher, G ;
Chisholm, MF ;
Alber, U ;
Rühle, M .
NATURE MATERIALS, 2004, 3 (09) :621-626
[6]   Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests [J].
Ersoy, Feyzan ;
Gavrilov, Serguei ;
Verbeken, Kim .
JOURNAL OF NUCLEAR MATERIALS, 2016, 472 :171-177
[7]   High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J].
George, E. P. ;
Curtin, W. A. ;
Tasan, C. C. .
ACTA MATERIALIA, 2020, 188 :435-474
[8]   Dissolution Condensation Mechanism of Stress Corrosion Cracking in Liquid Metals: Driving Force and Crack Kinetics [J].
Glickman, Evgeny E. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (02) :250-266
[9]   Liquid metal embrittlement of an Fe10Cr4Al ferritic alloy exposed to oxygen-depleted and -saturated lead-bismuth eutectic at 350°C [J].
Gong, Xing ;
Chen, Jiajun ;
Hu, Feiyu ;
Xiang, Congying ;
Yu, Zhiyang ;
Xiao, Jun ;
Wang, Hui ;
Gong, Haoran ;
Wang, Hao ;
Liu, Chaohong ;
Deng, Yangbin ;
Pang, Bo ;
Huang, Xi ;
Li, Yongchun ;
Yin, Yuan .
CORROSION SCIENCE, 2020, 165
[10]   The role of oxide films in preventing liquid metal embrittlement of T91 steel exposed to liquid lead-bismuth eutectic [J].
Gong, Xing ;
Marmy, Pierre ;
Yin, Yuan .
JOURNAL OF NUCLEAR MATERIALS, 2018, 509 :401-407