Sn2+ and Cu2+ Self-Codoped Cu2ZnSnS4 Nanosheets Switching from p-Type to n-Type Semiconductors for Visible-Light-Driven CO2 Reduction

被引:17
作者
Chai, Yao [1 ]
Chen, Yanmei [1 ]
Wang, Bing [1 ]
Jiang, Jianing [1 ]
Liu, Yongzhi [1 ]
Shen, Jinni [1 ]
Wang, Xuxu [1 ]
Zhang, Zizhong [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Qingyuan Innovat Lab, Quanzhou 362801, Peoples R China
基金
中国国家自然科学基金;
关键词
KEYWORDS; Cu; 2; ZnSnS; 4; Photocatalysis; Self-codoping; Energy level engineering; CO; reduction; SOLID-SOLUTION; PHOTOREDUCTION; PHOTOCATALYST; NANOPARTICLES; COCATALYST;
D O I
10.1021/acssuschemeng.2c01564
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
ABSTRACT: Energy level engineering is a powerful technique to tune the electron transport and the photocatalytic properties of photocatalysts with low-valence Sn2+ and high-valence Cu2+ selfcodoping by solvothermal method. The band gap energy level and Fermi level of Cu2ZnSnS4 nanosheets can be adjusted by controlling Sn2+ and Cu2+ self-codoping at different solvothermal temperature. This leads to semiconductor behavior change from p-type of the intrinsic Cu2ZnSnS4 to the n-type of self-codoped sample. The n-type Cu2ZnSnS4 nanosheets exhibit a good CO2 photoreduction performance to yield 48.14 and 25.04 mu mol g-1 h-1 of CO and CH4, where CO yields on n-type Cu2ZnSnS4 is about 4 times higher than that on the intrinsic Cu2ZnSnS4. This work offers a versatile approach of different valence metal ion self-codoping to engineer the energy level of multimetal semiconductor photocatalyst.
引用
收藏
页码:8825 / 8834
页数:10
相关论文
共 49 条
[1]   In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction [J].
Bie, Chuanbiao ;
Zhu, Bicheng ;
Xu, Feiyan ;
Zhang, Liuyang ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2019, 31 (42)
[2]   Distortion of the Coordination Structure and High Symmetry of the Crystal Structure in In4SnS8 Microflowers for Enhancing Visible-Light Photocatalytic CO2 Reduction [J].
Chai, Yao ;
Chen, Yanmei ;
Shen, Jinni ;
Ni, Mengmeng ;
Wang, Bing ;
Li, Dongmiao ;
Zhang, Zizhong ;
Wang, Xuxu .
ACS CATALYSIS, 2021, 11 (17) :11029-11039
[3]   Amine-Functionalized Graphene/CdS Composite for Photocatalytic Reduction of CO2 [J].
Cho, Kyeong Min ;
Kim, Kyoung Hwan ;
Park, Kangho ;
Kim, Chansol ;
Kim, Sungtak ;
Al-Saggaf, Ahmed ;
Gereige, Issam ;
Jung, Hee-Tae .
ACS CATALYSIS, 2017, 7 (10) :7064-7069
[4]   Defect-Rich Bi12O17Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction [J].
Di, Jun ;
Zhu, Chao ;
Ji, Mengxia ;
Duan, Meilin ;
Long, Ran ;
Yan, Cheng ;
Gu, Kaizhi ;
Xiong, Jun ;
She, Yuanbin ;
Xia, Jiexiang ;
Li, Huaming ;
Liu, Zheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (45) :14847-14851
[5]   Ultrathin 2D Photocatalysts: Electronic-Structure Tailoring, Hybridization, and Applications [J].
Di, Jun ;
Xiong, Jun ;
Li, Huaming ;
Liu, Zheng .
ADVANCED MATERIALS, 2018, 30 (01)
[6]   Cu2ZnSnS4-Au Heterostructures: Toward Greener Chalcogenide-Based Photocatalysts [J].
Dilsaver, Patrick S. ;
Reichert, Malinda D. ;
Hallmark, Brittany L. ;
Thompson, Michelle J. ;
Vela, Javier .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (36) :21226-21234
[7]   Photocatalytic Aqueous CO2 Reduction to CO and CH4 Sensitized by Ullazine Supramolecular Polymers [J].
Dumele, Oliver ;
Dordevic, Luka ;
Sai, Hiroaki ;
Cotey, Thomas J. ;
Sangji, M. Hussain ;
Sato, Kohei ;
Dannenhoffer, Adam J. ;
Stupp, Samuel I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (07) :3127-3136
[8]   Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity [J].
Fu, Junwei ;
Zhu, Bicheng ;
Jiang, Chuanjia ;
Cheng, Bei ;
You, Wei ;
Yu, Jiaguo .
SMALL, 2017, 13 (15)
[9]   Persian buttercup-like BiOBrxCl1-x solid solution for photocatalytic overall CO2 reduction to CO and O2 [J].
Gao, Meichao ;
Yang, Jinxiang ;
Sun, Tao ;
Zhang, Zizhong ;
Zhang, Dafeng ;
Huang, Huijuan ;
Lin, Huaxiang ;
Fang, Yi ;
Wang, Xuxu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 :734-740
[10]  
Han ST, 2022, CHIN J STRUCT CHEM, V41, P2201007, DOI 10.14102/j.cnki.0254-5861.2021-0026