Large deviations and phase transition for random walks in random nonnegative potentials

被引:24
作者
Flury, Markus [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
random walk; random potential; path measure; Lyapunov function; shape theorem; large deviation principle; phase transition;
D O I
10.1016/j.spa.2006.09.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish large deviation principles and phase transition results for both quenched and annealed settings of nearest-neighbor random walks with constant drift in random nonnegative potentials on Z(d). We complement the analysis of M.P.W. Zerner [Directional decay of the Green's function for a random nonnegative potential on Z(d), Ann. Appl. Probab. 8 (1996) 246-280], where a shape theorem on the Lyapunov functions and a large deviation principle in absence of the drift are achieved for the quenched setting. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:596 / 612
页数:17
相关论文
共 8 条
[1]  
Deuschel JD, 2001, Large Deviations, V342
[2]  
FLURY M, 2006, COINCIDENCE LYAPUNOV
[3]  
Grimmett G., 1999, PERCOLATION
[4]  
Sznitman A.-S., 1998, BROWNIAN MOTION OBST
[5]  
SZNITMAN AS, 1995, ANN SCI ECOLE NORM S, V4, P371
[6]  
SZNITMAN AS, 1995, J FUNCT ANAL, V131, P45
[7]  
Woess W., 2000, RANDOM WALKS INFINIT
[8]  
ZERNER MPW, 1996, ANN APPL PROBAB, V8, P246