Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of COVID-19 Infection

被引:41
作者
Letarov, Andrey, V [1 ,2 ]
Babenko, Vladislav V. [3 ]
Kulikov, Eugene E. [1 ]
机构
[1] Russian Acad Sci, Biotechnol Res Ctr, Winogradsky Inst Microbiol, Moscow 117312, Russia
[2] Lomonosov Moscow State Univ, Fac Biol, Moscow 119991, Russia
[3] Fed Med Biol Agcy, Fed Res & Clin Ctr Phys Chem Med, Moscow 119435, Russia
关键词
SARS-CoV-2; renin-angiotensin system; spike protein; S1 subunit shedding; COVID-19; pathogenesis; D614G mutation; CRYO-EM;
D O I
10.1134/S0006297921030032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The imbalance of the renin-angiotensin system is currently considered as a potentially important factor of the pathogenesis of COVID-19 disease. It has been shown previously in the murine model, that the expression of angiotensin-converting enzyme 2 (ACE2) on the cell surface is downregulated in response to the infection by SARS-CoV virus or recombinant spike protein (S protein) alone. In the case of natural infection, circulation of the S protein in a soluble form is unlikely. However, in SARS-CoV-2, a large fraction of S protein trimers is pre-processed during virion morphogenesis due to the presence of furin protease cleavage site between the S1 and S2 subunits. Therefore, S protein transition into the fusion conformation may be accompanied by the separation of the S1 subunits carrying the receptor-binding domains from the membrane-bound S2 subunits. The fate of the S1 particles shed due to the spontaneous "firing" of some S protein trimers exposed on the virions and on the surface of infected cells has been never investigated. We hypothesize that the soluble S1 subunits of the SARS-CoV-2 S protein shed from the infected cells and from the virions in vivo may bind to the ACE2 and downregulate cell surface expression of this protein. The decrease in the ACE2 activity on the background of constant or increased ACE activity in the lungs may lead to the prevalence of angiotensin II effects over those of angiotensin (1-7), thus promoting thrombosis, inflammation, and pulmonary damage. This hypothesis also suggests the association between less pronounced shedding of the S1 particles reported for the S protein carrying the D614G mutation (vs. the wild type D614 protein), and lack of increased severity of the COVID-19 infection caused by the mutant (D614G) SARS-CoV-2 strain, despite its higher infectivity and higher in vivo viral load.
引用
收藏
页码:257 / 261
页数:5
相关论文
共 26 条
[1]   Emerging coronaviruses: Genome structure, replication, and pathogenesis [J].
Chen, Yu ;
Liu, Qianyun ;
Guo, Deyin .
JOURNAL OF MEDICAL VIROLOGY, 2020, 92 (04) :418-423
[2]   Coronaviruses Induce Entry-Independent, Continuous Macropinocytosis [J].
Freeman, Megan Culler ;
Peek, Christopher T. ;
Becker, Michelle M. ;
Smith, Everett Clinton ;
Denison, Mark R. .
MBIO, 2014, 5 (04) :1-10
[3]   Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System Celebrating the 20th Anniversary of the Discovery of ACE2 [J].
Gheblawi, Mahmoud ;
Wang, Kaiming ;
Viveiros, Anissa ;
Quynh Nguyen ;
Zhong, Jiu-Chang ;
Turner, Anthony J. ;
Raizada, Mohan K. ;
Grant, Maria B. ;
Oudit, Gavin Y. .
CIRCULATION RESEARCH, 2020, 126 (10) :1456-1474
[4]   The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design [J].
Groves, Danielle C. ;
Rowland-Jones, Sarah L. ;
Angyal, Adrienn .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 538 :104-107
[5]   A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells [J].
Hoffmann, Markus ;
Kleine-Weber, Hannah ;
Poehlmann, Stefan .
MOLECULAR CELL, 2020, 78 (04) :779-+
[6]  
Hou Yixuan J, 2020, bioRxiv, DOI 10.1101/2020.09.28.317685
[7]   Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus [J].
Korber, Bette ;
Fischer, Will M. ;
Gnanakaran, Sandrasegaram ;
Yoon, Hyejin ;
Theiler, James ;
Abfalterer, Werner ;
Hengartner, Nick ;
Giorgi, Elena E. ;
Bhattacharya, Tanmoy ;
Foley, Brian ;
Hastie, Kathryn M. ;
Parker, Matthew D. ;
Partridge, David G. ;
Evans, Cariad M. ;
Freeman, Timothy M. ;
de Silva, Thushan, I ;
McDanal, Charlene ;
Perez, Lautaro G. ;
Tang, Haili ;
Moon-Walker, Alex ;
Whelan, Sean P. ;
LaBranche, Celia C. ;
Saphire, Erica O. ;
Montefiori, David C. .
CELL, 2020, 182 (04) :812-+
[8]   A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury [J].
Kuba, K ;
Imai, Y ;
Rao, SA ;
Gao, H ;
Guo, F ;
Guan, B ;
Huan, Y ;
Yang, P ;
Zhang, YL ;
Deng, W ;
Bao, LL ;
Zhang, BL ;
Liu, G ;
Wang, Z ;
Chappell, M ;
Liu, YX ;
Zheng, DX ;
Leibbrandt, A ;
Wada, T ;
Slutsky, AS ;
Liu, DP ;
Qin, CA ;
Jiang, CY ;
Penninger, JM .
NATURE MEDICINE, 2005, 11 (08) :875-879
[9]   The Architecture of Inactivated SARS-CoV-2 with Postfusion Spikes Revealed by Cryo-EM and Cryo-ET [J].
Liu, Chuang ;
Mendonca, Luiza ;
Yang, Yang ;
Gao, Yuanzhu ;
Shen, Chenguang ;
Liu, Jiwei ;
Ni, Tao ;
Ju, Bin ;
Liu, Congcong ;
Tang, Xian ;
Wei, Jinli ;
Ma, Xiaomin ;
Zhu, Yanan ;
Liu, Weilong ;
Xu, Shuman ;
Liu, Yingxia ;
Yuan, Jing ;
Wu, Jing ;
Liu, Zheng ;
Zhang, Zheng ;
Liu, Lei ;
Wang, Peiyi ;
Zhang, Peijun .
STRUCTURE, 2020, 28 (11) :1218-+
[10]   Molecular Architecture of Early Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major Metropolitan Area [J].
Long, S. Wesley ;
Olsen, Randall J. ;
Christensen, Paul A. ;
Bernard, David W. ;
Davis, James J. ;
Shukla, Maulik ;
Nguyen, Marcus ;
Saavedra, Matthew Ojeda ;
Yerramilli, Prasanti ;
Pruitt, Layne ;
Subedi, Sishir ;
Kuo, Hung-Che ;
Hendrickson, Heather ;
Eskandari, Ghazaleh ;
Nguyen, Hoang A. T. ;
Long, J. Hunter ;
Kumaraswami, Muthiah ;
Goike, Jule ;
Boutz, Daniel ;
Gollihar, Jimmy ;
McLellan, Jason S. ;
Chou, Chia-Wei ;
Javanmardi, Kamyab ;
Finkelstein, Ilya J. ;
Musser, James M. .
MBIO, 2020, 11 (06) :1-30