Composition operators on Banach spaces of formal power series

被引:0
作者
Yousefi, B [1 ]
Jahedi, S [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 71454, Iran
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2003年 / 6B卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {beta(n)}(n=infinity)(0) be a sequence of positive numbers and 1 less than or equal to p < infinity. We consider the space H-p(beta) of all, power series f(z) = Sigma(n=0)(infinity) (f) over cap (n) z(n) such that Sigma(n=0)(infinity) \(f) over capn\(p) beta(n)(p) < infinity. Suppose that 1/p + 1/q = 1 and Sigma(n=1)(infinity) n(qj)/beta(n)(q) = infinity for some non-negative negative integer j. We show that if C., is compact on H-P(beta), then the non-tangential limit of phi((j+1)) has modulus greater than one at each boundary point of the open it-nit disc. Also we show that if C-phi is Fredholm on H-P(beta), then phi must be an automorphism of the open unit disc.
引用
收藏
页码:481 / 487
页数:7
相关论文
共 6 条
[1]  
Ahlfors L. V., 1973, McGraw-Hill Series in Higher Mathematics
[2]  
CONWAY JB, 1985, COURSE FUNCTIONAL AN
[3]  
RUDIN W, 1980, GRUNDLEHREN MATH WIS, V241
[4]  
Seddighi K., 1995, INT J MATH MATH SCI, V18, P107
[5]  
Shields A., 1974, MATH SURVEYS, V13, P49
[6]  
Yousefi, 2000, RENDICONTI CIRCOLO M, V49, P115, DOI [10.1007/BF02904223, DOI 10.1007/BF02904223]