Scale-Up of Thin-Film Deposition-Based Solid Oxide Fuel Cell by Sputtering, a Commercially Viable Thin-Film Technology

被引:29
作者
Noh, Ho-Sung [1 ]
Hong, Jongsup [1 ]
Kim, Hyoungchul [1 ,2 ]
Yoon, Kyung Joong [1 ,2 ]
Kim, Byung-Kook [1 ]
Lee, Hae-Weon [1 ]
Lee, Jong-Ho [1 ,2 ]
Son, Ji-Won [1 ,2 ]
机构
[1] Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Seoul 02792, South Korea
[2] Korea Univ Sci & Technol UST, Nanomat Sci & Engn, KIST Campus, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
YTTRIA-STABILIZED-ZIRCONIA; PULSED-LASER DEPOSITION; CHEMICAL SOLUTION DEPOSITION; ELECTROLYTE LAYERS; SPRAY-PYROLYSIS; SOFC; TEMPERATURE; PERFORMANCE; MICROSTRUCTURE; ANODE;
D O I
10.1149/2.0331607jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The feasibility of fabricating large-area thin-film solid oxide fuel cells (TF-SOFC) using a commercially viable vapor deposition technology-i.e., sputtering in the present study-is investigated. By using a 2-inch sputtering system, a multi-scale-architecture platform consisting of a nanostructured NiO-yttria-stabilized zirconia (YSZ) anode and an approximately 750 nm-thick YSZ/gadolinia-doped ceria (GDC) bilayer is successfully fabricated over a 5 x 5 cm NiO-YSZ anode support. An open cell voltage (OCV) of 1.1 V and a peak power density exceeding 1.2 W cm(-2) at 600 degrees C are obtained. The total power output at 0.7 V from the 5-cm-by-5 cm TF-SOFC reaches 15.52 W at 600 degrees C and 9.76 W at 550 degrees C. The total maximum power outputs are 19.52 and 14.08 W at 600 and 550 degrees C, respectively. To our knowledge, this is the highest total power output from a vapor deposition-based SOFC. The present study demonstrates the possibility of transferring this multi-scale-architecture TF-SOFC technology to the industrial sector using commercial thin-film technologies. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:F613 / F617
页数:5
相关论文
共 46 条
[41]   Industrial-scale high power impulse magnetron sputtering of yttria-stabilized zirconia on porous NiO/YSZ fuel cell anodes [J].
Sonderby, Steffen ;
Christensen, Bjarke H. ;
Almtoft, Klaus P. ;
Nielsen, Lars P. ;
Eklund, Per .
SURFACE & COATINGS TECHNOLOGY, 2015, 281 :150-156
[42]   Materials for fuel-cell technologies [J].
Steele, BCH ;
Heinzel, A .
NATURE, 2001, 414 (6861) :345-352
[43]  
Tsuchiya M., 2011, NAT NANO, V6
[44]   Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs [J].
Van Gestel, Tim ;
Sebold, Doris ;
Buchkremer, Hans Peter .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1505-1515
[45]   Lowering the Temperature of Solid Oxide Fuel Cells [J].
Wachsman, Eric D. ;
Lee, Kang Taek .
SCIENCE, 2011, 334 (6058) :935-939
[46]   Thermal stabilities of nanoporous metallic electrodes at elevated temperatures [J].
Wang, Xiaohong ;
Huang, Hong ;
Holme, Tim ;
Tian, Xu ;
Prinz, Fritz B. .
JOURNAL OF POWER SOURCES, 2008, 175 (01) :75-81