Large time asymptotics of solutions to the short-pulse equation

被引:5
作者
Okamoto, Mamoru [1 ]
机构
[1] Shinshu Univ, Fac Engn, Div Math & Phys, 4-17-1 Wakasato, Nagano 3808553, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2017年 / 24卷 / 04期
关键词
Reduced Ostrovsky equation; Short-pulse equation; Modified scattering; GENERALIZED OSTROVSKY EQUATION; GORDON EQUATIONS; WELL-POSEDNESS; WAVE BREAKING; SPACE; BEHAVIOR;
D O I
10.1007/s00030-017-0464-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the long-time behavior of solutions to the short-pulse equation. Using the method of testing by wave packets, we prove small data global existence and modified scattering.
引用
收藏
页数:24
相关论文
共 50 条
[21]   LARGE TIME ASYMPTOTICS FOR THE FRACTIONAL NONLINEAR SCHRODINGER EQUATION [J].
Hayashi, Nakao ;
Naumkin, Pavel, I .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2020, 25 (1-2) :31-80
[22]   ASYMPTOTICS FOR SMALL DATA SOLUTIONS OF THE ABLOWITZ-LADIK EQUATION [J].
Stewart, Gavin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (12) :4755-4816
[23]   Well-posedness and blow-up for a non-local elliptic-hyperbolic system related to short-pulse equation [J].
Wang, Lianhong ;
Li, Fengquan .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (05)
[24]   BOUNDED TRAVELING WAVE SOLUTIONS TO THE SHORT PULSE EQUATION [J].
Zhuang, Binxian ;
Xiang, Yuanjiang ;
Dai, Xiaoyu ;
Wen, Shuangchun .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2012, 21 (04)
[25]   Darboux Transformation and Multisoliton Solutions of the Short Pulse Equation [J].
Saleem, Usman ;
ul Hassan, Mahmood .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81 (09)
[26]   Inverse scattering transform for the complex short-pulse equation by a Riemann-Hilbert approach [J].
Prinari, Barbara ;
Trubatch, A. David ;
Feng, Bao-Feng .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (09)
[27]   Convergence of the regularized short pulse equation to the short pulse one [J].
Coclite, Giuseppe Maria ;
di Ruvo, Lorenzo .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) :774-792
[28]   On long-time asymptotics to the nonlocal short pulse equation with the Schwartz-type initial data: Without solitons [J].
Wu, Xin ;
Tian, Shou-Fu .
PHYSICA D-NONLINEAR PHENOMENA, 2023, 448
[29]   The short pulse equation by a Riemann-Hilbert approach [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry ;
Zielinski, Lech .
LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (07) :1345-1373
[30]   On classical solutions for the fifth-order short pulse equation [J].
Coclite, Giuseppe ;
di Ruvo, Lorenzo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) :8814-8837