Implicit Euler method for numerical solution of nonlinear stochastic partial differential equations with multiplicative trace class noise

被引:6
作者
Kamrani, Minoo [1 ]
Hosseini, S. Mohammad [2 ]
Hausenblas, Erika [3 ]
机构
[1] Razi Univ, Dept Math, Fac Sci, Kermanshah, Iran
[2] Tarbiat Modares Univ, Dept Appl Math, Tehran, Iran
[3] Univ Leoben, Dept Math & Informat Technol, Leoben, Austria
基金
奥地利科学基金会;
关键词
L-2; convergence; semi-implicit Euler method; spectral collocation method; stochastic partial differential equation; FINITE-ELEMENT METHODS; EVOLUTION EQUATIONS; BURGERS-EQUATION; ADDITIVE NOISE; APPROXIMATION; DRIVEN; DISCRETIZATION; REGULARITY; PDES;
D O I
10.1002/mma.4946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the numerical approximation of stochastic partial differential equations with nonlinear multiplicative trace class noise. Discretization is obtained by spectral collocation method in space, and semi-implicit Euler method is used for the temporal approximation. Our purpose is to investigate the convergence of the proposed method. The rate of convergence is obtained, and some numerical examples are included to illustrate the estimated convergence rate.
引用
收藏
页码:4986 / 5002
页数:17
相关论文
共 25 条
[1]  
Allen E. J., 1998, STOCH STOCH REP, V64, P117, DOI DOI 10.1080/17442509808834159
[2]  
[Anonymous], 2001, J APPL MATH STOCH AN
[3]  
[Anonymous], 2012, Semigroups of Linear Operators and Applications to Partial Differential Equations, DOI DOI 10.1007/978-1-4612-5561-1
[4]   Full discretization of the stochastic Burgers equation with correlated noise [J].
Bloemker, Dirk ;
Kamrani, Minoo ;
Hosseini, S. Mohammad .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) :825-848
[5]   GALERKIN APPROXIMATIONS FOR THE STOCHASTIC BURGERS EQUATION [J].
Bloemker, Dirk ;
Jentzen, Arnulf .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :694-715
[6]  
Boyd JP, 2001, Chebyshev and Fourier spectral methods
[7]  
Da Prato G., 2014, STOCHASTIC EQUATIONS, P152, DOI [10.1017/CBO9780511666223, 10.1017/CBO9781107295513]
[8]   Existence and uniqueness results for semilinear stochastic partial differential equations [J].
Gyongy, I .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 73 (02) :271-299
[9]   Numerical analysis of semilinear stochastic evolution equations in Banach spaces [J].
Hausenblas, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 147 (02) :485-516
[10]   Approximation for semilinear stochastic evolution equations [J].
Hausenblas, E .
POTENTIAL ANALYSIS, 2003, 18 (02) :141-186