Feature-Aware Attentive Variational Auto-Encoder for Top-N Recommendation

被引:1
|
作者
Pang, Bo [1 ]
Bao, Han [1 ]
Wang, Chongjun [1 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
关键词
Recommender system; Variational auto-encoder; Attention mechanism;
D O I
10.1109/ICTAI50040.2020.00019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Personalized recommendation has become increasingly pervasive due to its great commercial value in business. Deep neural networks can automatically exvacate the behavior patterns from the historical interaction records, which has achieved excellent results in related tasks. Among them, the variational auto-encoders have been shown to be superior for learning to rank and recommendation on massive data. However, prior work neglects the association between user behavior and side information, which affects the quality of recommendation services to some extent. In this paper, we propose a feature-aware attentive variational auto-encoder for top-N recommendation. The attention mechanism is utilized to capture the relationship between user's representation and side information through a sub network, balancing the fusion weight of attributes in the main network. In addition, this method tries to construct combination of features in the high-dimensional embedding space, helping mining the promotion of side information at a finer scale. Experiments conducted on real-world datasets demonstrate the effectiveness over the state-of-art methods.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [1] A Novel Top-N Recommendation Approach Based on Conditional Variational Auto-Encoder
    Pang, Bo
    Yang, Min
    Wang, Chongjun
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT II, 2019, 11440 : 357 - 368
  • [2] Adversarial Collaborative Auto-encoder for Top-N Recommendation
    Yuan, Feng
    Yao, Lina
    Benatallah, Boualem
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [3] Attentive Auto-encoder for Content-Aware Music Recommendation
    Li, Le
    Tao, Dan
    Zheng, Chenwang
    Gao, Ruipeng
    CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2022, 4 (01) : 76 - 87
  • [4] Attentive Auto-encoder for Content-Aware Music Recommendation
    Le Li
    Dan Tao
    Chenwang Zheng
    Ruipeng Gao
    CCF Transactions on Pervasive Computing and Interaction, 2022, 4 : 76 - 87
  • [5] Implicit relation-aware social recommendation with variational auto-encoder
    Qiqi Zheng
    Guanfeng Liu
    An Liu
    Zhixu Li
    Kai Zheng
    Lei Zhao
    Xiaofang Zhou
    World Wide Web, 2021, 24 : 1395 - 1410
  • [6] Implicit relation-aware social recommendation with variational auto-encoder
    Zheng, Qiqi
    Liu, Guanfeng
    Liu, An
    Li, Zhixu
    Zheng, Kai
    Zhao, Lei
    Zhou, Xiaofang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (05): : 1395 - 1410
  • [7] Disentangled Graph Variational Auto-Encoder for Multimodal Recommendation With Interpretability
    Zhou, Xin
    Miao, Chunyan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7543 - 7554
  • [8] Causal Disentangled Variational Auto-Encoder for Preference Understanding in Recommendation
    Wang, Siyu
    Chen, Xiaocong
    Sheng, Quan Z.
    Zhang, Yihong
    Yao, Lina
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1874 - 1878
  • [9] Design of Confidence-Integrated Denoising Auto-Encoder for Personalized Top-N Recommender Systems
    Khan, Zeshan Aslam
    Chaudhary, Naveed Ishtiaq
    Abbasi, Waqar Ali
    Ling, Sai Ho
    Raja, Muhammad Asif Zahoor
    MATHEMATICS, 2023, 11 (03)
  • [10] Hierarchical Hybrid Feature Model For Top-N Context-Aware Recommendation
    Du, Yingpeng
    Liu, Hongzhi
    Wu, Zhonghai
    Zhang, Xing
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 109 - 116