On the Photonic Dispersion of Periodic Superlattices Made of Left-Handed Materials

被引:1
作者
Cavalcanti, Solange B. [1 ]
Reyes-Gomez, Ernesto [2 ]
Bruno-Alfonso, Alexys [3 ]
de Carvalho, Carlos A. A. [4 ,5 ]
Oliveira, Luiz E. [6 ,7 ]
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil
[2] Univ Antioquia, Inst Fis, Medellyn 1226, Colombia
[3] Univ Estadual Paulista, Fac Ciencias, BR-17033 Bauru, SP, Brazil
[4] Univ Fed Rio de Janeiro, Inst Fis, BR-2194597 Rio De Janeiro, RJ, Brazil
[5] Campus Xerem, Inmetro, BR-2525002 Duque de Caxias, RJ, Brazil
[6] Univ Estadual Campinas, Inst Fis, BR-13083970 Campinas, SP, Brazil
[7] Campus de Xerem, Inmetro, BR-25250020 Duque de Caxias, RJ, Brazil
来源
EXTREME PHOTONICS AND APPLICATIONS | 2010年
关键词
One-dimensional stacks; left-handed materials; plasmon polaritons; BAND-GAP; CRYSTALS;
D O I
10.1007/978-90-481-3634-6_11
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Studies of the band gap properties of one-dimensional superlattices with alternate layers of air and left-handed materials are carried out within the framework of Maxwell's equations. By left-handed material, we mean a material with dispersive negative electric and magnetic responses. Modeling them by Drude-type responses or by fabricated ones, we characterize the < n(omega)> = 0 gap, i.e., the zeroth order gap, which has been predicted and detected. The hand structure and analytic equations for the band edges have been obtained in the long wavelength limit in case of periodic, Fibonacci, and Thue-Morse superlattices. Our studies reveal the nature of the width of the zeroth order band gap, whose edge equations are defined by null averages of the response functions. Oblique incidence is also investigated, yielding remarkable results.
引用
收藏
页码:193 / +
页数:4
相关论文
共 36 条
[1]   Manipulating light pulses via dynamically controlled photonic band gap -: art. no. 143602 [J].
André, A ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2002, 89 (14)
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]  
Bria D, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066613
[4]   Band edge states of the ⟨n⟩=0 gap of Fibonacci photonic lattices [J].
Bruno-Alfonso, A. ;
Reyes-Gomez, E. ;
Cavalcanti, S. B. ;
Oliveira, L. E. .
PHYSICAL REVIEW A, 2008, 78 (03)
[5]  
BRUNOALFONSO A, 2008, P SPIE, V7138
[6]   Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum [J].
Busch, K ;
John, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (05) :967-970
[7]   Photonic band structure and symmetry properties of electromagnetic modes in photonic crystals [J].
Cavalcanti, S. B. ;
de Dios-Leyva, M. ;
Reyes-Gomez, E. ;
Oliveira, L. E. .
PHYSICAL REVIEW E, 2007, 75 (02)
[8]   Band structure and band-gap control in photonic superlattices [J].
Cavalcanti, S. B. ;
de Dios-Leyva, M. ;
Reyes-Gomez, E. ;
Oliveira, L. E. .
PHYSICAL REVIEW B, 2006, 74 (15)
[9]   Subwavelength resolution in a two-dimensional photonic-crystal-based superlens [J].
Cubukcu, E ;
Aydin, K ;
Ozbay, E ;
Foteinopoulou, S ;
Soukoulis, CM .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[10]   Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials [J].
Daninthe, H. ;
Foteinopoulou, S. ;
Soukoulis, C. M. .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2006, 4 (03) :123-131