A note on multiplicative automatic sequences

被引:6
作者
Klurman, Oleksiy [1 ]
Kurlberg, Par [1 ]
机构
[1] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
D O I
10.1016/j.crma.2019.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any q-automatic completely multiplicative function f: N -> C essentially coincides with a Dirichlet character. This answers a question of J.-P. Allouche and L. Gold-makher and confirms a conjecture of J. Bell, N. Bruin and M. Coons for completely multiplicative functions. Further, assuming GRH, the methods allow us to replace completely multiplicative functions with multiplicative functions. (C) 2019 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:752 / 755
页数:4
相关论文
共 14 条
[1]  
Allouche J.-P., 2003, Automatic Sequences. Theory, Applications, Generalizations
[2]   Mock characters and the Kronecker symbol [J].
Allouche, Jean-Paul ;
Goldmakher, Leo .
JOURNAL OF NUMBER THEORY, 2018, 192 :356-372
[3]  
Bell JP, 2012, T AM MATH SOC, V364, P933
[4]  
Christol G., 1979, Theoretical Computer Science, V9, P141, DOI 10.1016/0304-3975(79)90011-2
[5]  
CHRISTOL G, 1980, B SOC MATH FR, V108, P401
[6]   HAEMONIC ANALYSIS ON THE POSITIVE RATIONALS. DETERMINATION OF THE GROUP GENERATED BY THE RATIOS (an plus b)/(An plus B) [J].
Elliott, P. D. T. A. ;
Kish, Jonathan .
MATHEMATIKA, 2017, 63 (03) :919-943
[7]   ARTIN CONJECTURE FOR PRIMITIVE ROOTS [J].
HEATHBROWN, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1986, 37 (145) :27-38
[8]   Subword complexity and non-automaticity of certain completely multiplicative functions [J].
Hu, Yining .
ADVANCES IN APPLIED MATHEMATICS, 2017, 84 :73-81
[9]  
Klurman O., 2019, NOTE MULTIPLICATIVE, VII
[10]  
Konieczny J., 2019, MULTIPLICATIVE AUTOM