LEARNING STYLE CORRELATION FOR ELABORATE FEW-SHOT CLASSIFICATION

被引:0
|
作者
Kim, Junho [1 ]
Kim, Minsu [1 ]
Kim, Jung Uk [1 ]
Lee, Hong Joo [1 ]
Lee, Sangmin [1 ]
Hong, Joanna [1 ]
Ro, Yong Man [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Image & Video Syst Lab, Sch Elect Engn, Seoul, South Korea
关键词
Deep learning; Style correlation; Style Correlated Module; Few-shot classification;
D O I
10.1109/icip40778.2020.9190685
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Few-shot classification is defined as a task where the network aims to classify unseen classes given only a few samples. Recent approaches, especially metric-based methods, have great progress in few-shot classification. However, the existing metric-based methods have a limitation in deploying discriminative features for elaborate comparison. They usually extract features from the embedding network without direct consideration of the relationship between support and query sets. To address the relationship, we propose a novel architecture, Style Correlated Module (SCM) to learn style correlation between support and query sets for few-shot classification. The proposed module leads support and query feature maps to focus on significant style correlated features and encourage the metric network to conduct an elaborate comparison. Furthermore, the proposed module can be generally applied to the existing metric-based approaches by adding the SCM behind the embedding network. We evaluate our proposed method with comprehensive experiments on two publicly available datasets and demonstrate its effectiveness with comparable results.
引用
收藏
页码:1791 / 1795
页数:5
相关论文
共 50 条
  • [21] Fair Meta-Learning For Few-Shot Classification
    Zhao, Chen
    Li, Changbin
    Li, Jincheng
    Chen, Feng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 275 - 282
  • [22] Classification of Marine Plankton Based on Few-shot Learning
    Jin Guo
    Jihong Guan
    Arabian Journal for Science and Engineering, 2021, 46 : 9253 - 9262
  • [23] Classification of Marine Plankton Based on Few-shot Learning
    Guo, Jin
    Guan, Jihong
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (09) : 9253 - 9262
  • [24] Heterogeneous Few-Shot Learning for Hyperspectral Image Classification
    Wang, Yan
    Liu, Ming
    Yang, Yuexin
    Li, Zhaokui
    Du, Qian
    Chen, Yushi
    Li, Fei
    Yang, Haibo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] Few-shot classification based on manifold metric learning
    Shang, Qingzhen
    Yang, Jinfu
    Ma, Jiaqi
    Zhang, Jiahui
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (01)
  • [26] Few-shot ship classification based on metric learning
    Zhou, You
    Chen, Changlin
    Ma, Shukun
    MULTIMEDIA SYSTEMS, 2021, 29 (5) : 2877 - 2886
  • [27] Malware Classification Using Few-Shot Learning Approach
    Alfarsi, Khalid
    Rasheed, Saim
    Ahmad, Iftikhar
    INFORMATION, 2024, 15 (11)
  • [28] Binocular Mutual Learning for Improving Few-shot Classification
    Zhou, Ziqi
    Qiu, Xi
    Xie, Jiangtao
    Wu, Jianan
    Zhang, Chi
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8382 - 8391
  • [29] Supervised Contrastive Learning for Few-Shot Action Classification
    Han, Hongfeng
    Fei, Nanyi
    Lu, Zhiwu
    Wen, Ji-Rong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 512 - 528
  • [30] Cycle optimization metric learning for few-shot classification *
    Liu, Qifan
    Cao, Wenming
    He, Zhihai
    PATTERN RECOGNITION, 2023, 139