LEARNING STYLE CORRELATION FOR ELABORATE FEW-SHOT CLASSIFICATION

被引:0
|
作者
Kim, Junho [1 ]
Kim, Minsu [1 ]
Kim, Jung Uk [1 ]
Lee, Hong Joo [1 ]
Lee, Sangmin [1 ]
Hong, Joanna [1 ]
Ro, Yong Man [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Image & Video Syst Lab, Sch Elect Engn, Seoul, South Korea
关键词
Deep learning; Style correlation; Style Correlated Module; Few-shot classification;
D O I
10.1109/icip40778.2020.9190685
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Few-shot classification is defined as a task where the network aims to classify unseen classes given only a few samples. Recent approaches, especially metric-based methods, have great progress in few-shot classification. However, the existing metric-based methods have a limitation in deploying discriminative features for elaborate comparison. They usually extract features from the embedding network without direct consideration of the relationship between support and query sets. To address the relationship, we propose a novel architecture, Style Correlated Module (SCM) to learn style correlation between support and query sets for few-shot classification. The proposed module leads support and query feature maps to focus on significant style correlated features and encourage the metric network to conduct an elaborate comparison. Furthermore, the proposed module can be generally applied to the existing metric-based approaches by adding the SCM behind the embedding network. We evaluate our proposed method with comprehensive experiments on two publicly available datasets and demonstrate its effectiveness with comparable results.
引用
收藏
页码:1791 / 1795
页数:5
相关论文
共 50 条
  • [1] Few-Shot Classification with Contrastive Learning
    Yang, Zhanyuan
    Wang, Jinghua
    Zhu, Yingying
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 293 - 309
  • [2] Learning feature alignment and dual correlation for few-shot image classification
    Huang, Xilang
    Choi, Seon Han
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (02) : 303 - 318
  • [3] Mutual Correlation Network for few-shot learning
    Chen, Derong
    Chen, Feiyu
    Ouyang, Deqiang
    Shao, Jie
    NEURAL NETWORKS, 2024, 175
  • [4] Few-shot learning for short text classification
    Yan, Leiming
    Zheng, Yuhui
    Cao, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29799 - 29810
  • [5] Few-Shot Learning for Issue Report Classification
    Colavito, Giuseppe
    Lanubile, Filippo
    Novielli, Nicole
    2023 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON NATURAL LANGUAGE-BASED SOFTWARE ENGINEERING, NLBSE, 2023, : 16 - 19
  • [6] Few-shot learning for short text classification
    Leiming Yan
    Yuhui Zheng
    Jie Cao
    Multimedia Tools and Applications, 2018, 77 : 29799 - 29810
  • [7] Dense Classification and Implanting for Few-Shot Learning
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    Bursuc, Andrei
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9250 - 9259
  • [8] Diversified Contrastive Learning For Few-Shot Classification
    Lu, Guangtong
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT I, 2023, 14254 : 147 - 158
  • [9] Integrative Few-Shot Learning for Classification and Segmentation
    Kang, Dahyun
    Cho, Minsu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9969 - 9980
  • [10] Visual Classification of Malware by Few-shot Learning
    Tran, Kien
    Kubo, Masao
    Sato, Hiroshi
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 770 - 774