Feng-Liu type approach to best proximity point results for multivalued mappings

被引:39
作者
Sahin, Hakan [1 ]
Aslantas, Mustafa [2 ]
Altun, Ishak [3 ]
机构
[1] Amasya Univ, Fac Sci & Arts, Dept Math, Amasya, Turkey
[2] Cankiri Karatekin Univ, Dept Math, Fac Sci, TR-18100 Cankiri, Turkey
[3] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
关键词
Best proximity point; multivalued mappings; complete metric space; THEOREMS; EXISTENCE; MULTIFUNCTIONS; EXTENSIONS;
D O I
10.1007/s11784-019-0740-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d) be a metric space, A and B be two nonempty subsets of X, and T : A. B be a mapping. In this case, since the equation x = Tx may not have an exact solution, it is meaningful to explore the approximate solution. The best approximation results in the literature are related to investigate such solutions. Further, best proximity point theorems not only investigate the approximate solution of the equation x = Tx, but also an optimal solution of the minimization problem min{d(x, Tx) : x is an element of A}. Such points are called the best proximity points of the mapping T. In this paper, considering the Feng and Liu's approach in fixed point theory, we present some new results for best proximity points of nonself multivalued mappings.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] The existence of best proximity points for multivalued non-self-mappings
    Abkar, A.
    Gabeleh, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (02) : 319 - 325
  • [32] Fixed Point and Best Proximity Point Results for Generalised Cyclic Coupled Mappings
    Kadwin, J. Geno
    Marudai, M.
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (02): : 431 - 441
  • [33] BEST PROXIMITY POINT FOR CERTAIN PROXIMAL CONTRACTION TYPE MAPPINGS
    Alqahtani, Badr
    Hamzehnejadi, Javad
    Karapinar, Erdal
    Lashkaripour, Rahmatollah
    JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (05): : 1 - 15
  • [34] Best proximity point results for p-proximal contractions
    Altun, I.
    Aslantas, M.
    Sahin, H.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (02) : 393 - 402
  • [35] Finding the Best Proximity Point of Generalized Multivalued Contractions with Applications
    Patel, Deepesh Kumar
    Bhupeshwar, Bhupeshwar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (15-16) : 1602 - 1627
  • [36] Best Proximity Point Results for Multi-Valued Mappings in Generalized Metric Structure
    Khan, Asad Ullah
    Samreen, Maria
    Hussain, Aftab
    Al Sulami, Hamed
    SYMMETRY-BASEL, 2024, 16 (04):
  • [37] Best proximity points for α-ψ-proximal contractive type mappings and applications
    Jleli, Mohamed
    Samet, Bessem
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (08): : 977 - 995
  • [38] A BEST PROXIMITY POINT THEOREM FOR SUZUKI TYPE CONTRACTION NON-SELF-MAPPINGS
    Abkar, Ali
    Gabeleh, Moosa
    FIXED POINT THEORY, 2013, 14 (02): : 281 - 288
  • [39] Fixed Point Results for Multivalued Presic Type Weakly Contractive Mappings
    Latif, Abdul
    Nazir, Talat
    Abbas, Mujahid
    MATHEMATICS, 2019, 7 (07)
  • [40] Fixed point of multivalued integral type of contraction mappings
    Stojakovic, Mila
    Gajic, Ljiljana
    Dosenovic, Tatjana
    Caric, Biljana
    FIXED POINT THEORY AND APPLICATIONS, 2015,