A Novel Numerical Method for Computing Subdivision Depth of Quaternary Schemes

被引:4
作者
Shahzad, Aamir [1 ]
Khan, Faheem [1 ]
Ghaffar, Abdul [2 ]
Yao, Shao-Wen [3 ]
Inc, Mustafa [4 ,5 ,6 ]
Ali, Shafqat [7 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[2] Ghazi Univ DG Khan, Dept Math, D G Khan 32200, Pakistan
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
[4] Biruni Univ, Dept Comp Engn, TR-34096 Istanbul, Turkey
[5] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[7] Islamia Univ Bahawalpur, Dept Math, Bahawalpur 63100, Pakistan
基金
中国国家自然科学基金;
关键词
quaternary subdivision scheme; subdivision models; inequalities; convolution; error bound; subdivision depth; curves and surfaces; ARY SUBDIVISION; CURVE;
D O I
10.3390/math9080809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an advanced computational technique has been presented to compute the error bounds and subdivision depth of quaternary subdivision schemes. First, the estimation is computed of the error bound between quaternary subdivision limit curves/surfaces and their polygons after kth-level subdivision by using l0 order of convolution. Secondly, by using the error bounds, the subdivision depth of the quaternary schemes has been computed. Moreover, this technique needs fewer iterations (subdivision depth) to get the optimal error bounds of quaternary subdivision schemes as compared to the existing techniques.
引用
收藏
页数:20
相关论文
共 20 条
  • [1] Aslam M., 2012, ISRN MATH ANAL, V2012, P745096, DOI [10.5402/2012/745096, DOI 10.5402/2012/745096]
  • [2] Dual univariate m-ary subdivision schemes of de Rham-type
    Conti, Costanza
    Romani, Lucia
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) : 443 - 456
  • [3] A formula for estimating the deviation of a binary interpolatory subdivision curve from its data polygon
    Deng, Chongyang
    Jin, Wenbiao
    Li, Yajuan
    Xu, Huixia
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 304 : 10 - 19
  • [4] Repeated local operations for m-ary 2N-point Dubuc-Deslauriers subdivision schemes
    Deng, Chongyang
    Li, Yajuan
    Xu, Huixia
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2016, 44 : 10 - 14
  • [5] SYMMETRIC ITERATIVE INTERPOLATION PROCESSES
    DESLAURIERS, G
    DUBUC, S
    [J]. CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) : 49 - 68
  • [6] Estimating error bounds for quaternary subdivision schemes
    Hashmi, Sadiq
    Mustafa, Ghulam
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (01) : 159 - 167
  • [7] Generalized 5-Point Approximating Subdivision Scheme of Varying Arity
    Hussain, Sardar Muhammad
    Rehman, Aziz Ur
    Baleanu, Dumitru
    Nisar, Kottakkaran Sooppy
    Ghaffar, Abdul
    Abdul Karim, Samsul Ariffin
    [J]. MATHEMATICS, 2020, 8 (04)
  • [8] A Computational Method for Subdivision Depth of Ternary Schemes
    Khan, Faheem
    Mustafa, Ghulam
    Shahzad, Aamir
    Baleanu, Dumitru
    M. Al-Qurashi, Maysaa
    [J]. MATHEMATICS, 2020, 8 (05)
  • [9] Lian JA, 2009, APPL APPL MATH, V4, P434
  • [10] Error bounds for a class of subdivision schemes based on the two-scale refinement equation
    Moncayo, Maria
    Amat, Sergio
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) : 265 - 278