External and internal stability in set optimization using gamma convergence

被引:1
作者
Karuna [1 ]
Lalitha, C. S.
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
关键词
Painleve-Kuratowski convergence; Gamma-convergence; domination property; stability; set optimization; WELL-POSEDNESS; SCALARIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to investigate the stability of solution sets of perturbed set optimization problems in the decision space as well as in the image space, by perturbing the objective maps. For a sequence of set-valued maps, a notion of gamma convergence is introduced to establish the external and internal stability in terms of Painleve-Kuratowski convergence of sequence of solution sets of perturbed problems under certain compactness assumptions and domination properties.
引用
收藏
页码:393 / 406
页数:14
相关论文
共 50 条
[21]   Hadamard well-posedness and stability in set optimization [J].
Meenakshi Gupta ;
Manjari Srivastava .
Positivity, 2024, 28
[22]   Convergence of Solutions to Set Optimization Problems with the Set Less Order Relation [J].
Lam Quoc Anh ;
Tran Quoc Duy ;
Dinh Vinh Hien ;
Daishi Kuroiwa ;
Narin Petrot .
Journal of Optimization Theory and Applications, 2020, 185 :416-432
[23]   Approximate Solutions and Levitin-Polyak Well-Posedness for Set Optimization Using Weak Efficiency [J].
Gupta, Meenakshi ;
Srivastava, Manjari .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (01) :191-208
[24]   Painleve-Kuratowski convergence of minimal solutions for set-valued optimization problems via improvement sets [J].
Peng, Zai-Yun ;
Chen, Xue-Jing ;
Zhao, Yun-Bin ;
Li, Xiao-Bing .
JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) :759-781
[25]   On the Convergence of Efficient Solutions to Semi-Infinite Set-Optimization Problems [J].
Anh, Lam Quoc ;
Van Day, Lam ;
Duy, Tran Quoc .
MINIMAX THEORY AND ITS APPLICATIONS, 2024, 9 (02) :157-170
[26]   On the Stability of the Feasible Set in Linear Optimization [J].
M. A. Goberna ;
M. A. López ;
M. I. Todorov .
Set-Valued Analysis, 2001, 9 :75-99
[27]   On the stability of the feasible set in linear optimization [J].
Goberna, MA ;
López, MA ;
Todorov, MI .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :75-99
[28]   ON THE STABILITY OF THE FEASIBLE SET IN OPTIMIZATION PROBLEMS [J].
Dinh, N. ;
Goberna, M. A. ;
Lopez, M. A. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) :2254-2280
[29]   Stability of minimizers of set optimization problems [J].
Gaydu, Michael ;
Geoffroy, Michel H. ;
Jean-Alexis, Celia ;
Nedelcheva, Diana .
POSITIVITY, 2017, 21 (01) :127-141
[30]   Stability in vector-valued and set-valued optimization [J].
Huang, XX .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (10) :1433-1441