On reconstruction in the inverse conductivity problem, with one measurement

被引:57
作者
Ikehata, M [1 ]
机构
[1] Gunma Univ, Fac Engn, Dept Math, Kiryu, Gumma 3768515, Japan
关键词
D O I
10.1088/0266-5611/16/3/314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse problem for electrically conductive material occupying a domain Omega in R-2. Let gamma be the conductivity of Omega, and D a subdomain of Omega. We assume that gamma is a positive constant k on D, k not equal 1 and is 1 on Omega \ D; both D and k are unknown. The problem is to find a reconstruction formula of D from the Cauchy data on partial derivative Omega of a non-constant solution u of the equation del . gamma del u = 0 in Omega. We prove that if D is known to be a convex polygon such that diam D < dist (D, partial derivative Omega), there are two formulae for calculating the support function of D from the Cauchy data.
引用
收藏
页码:785 / 793
页数:9
相关论文
共 9 条
[1]  
Alessandrini G., 1996, Rend. Istit. Mat. Univ. Trieste, V28, P351
[2]   THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT - UNIQUENESS FOR CONVEX POLYHEDRA [J].
BARCELO, B ;
FABES, E ;
SEO, JK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) :183-189
[3]   STABILITY FOR AN INVERSE PROBLEM IN POTENTIAL-THEORY [J].
BELLOUT, H ;
FRIEDMAN, A ;
ISAKOV, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (01) :271-296
[4]  
Calderon A.P., 1980, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980, P65, DOI DOI 10.1590/S0101-82052006000200002
[5]   ON THE UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
FRIEDMAN, A ;
ISAKOV, V .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :563-579
[6]  
GRISVARD P, 1985, ELLIPITC PROBLEMS NO
[7]   Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data [J].
Ikehata, M .
INVERSE PROBLEMS, 1999, 15 (05) :1231-1241
[8]   The layer potential technique for the inverse conductivity problem [J].
Kang, H ;
Seo, JK .
INVERSE PROBLEMS, 1996, 12 (03) :267-278
[9]  
Seo J K., 1996, J FOURIER ANAL APPL, V2, P227, DOI [10.1007/s00041-001-4030-7, DOI 10.1007/S00041-001-4030-7]