Predictive functional control based on particle swarm optimisation algorithm for MIMO process with time delay

被引:4
作者
Ghadiri, Hamid [1 ]
Khodadadi, Hamed [2 ]
Razavi, S. Ehsan [3 ]
机构
[1] Islamic Azad Univ, Qazvin Branch, Fac Elect Biomed & Mech Engn, Qazvin, Iran
[2] Islamic Azad Univ, Khomeinishahr Branch, Dept Elect Engn, Esfahan, Iran
[3] Islamic Azad Univ, Dept Elect Engn, Mashhad Branch, Mashhad, Razavi Khorasan, Iran
关键词
multi-input multi-output; MIMO; time delay; predictive functional control; PFC; particle swarm optimisation; PSO; chamber pressure; SWITCHED NEUTRAL SYSTEMS; GUARANTEED COST CONTROL; TRACKING CONTROL; ANT COLONY; STRATEGY; DESIGN; TEMPERATURE;
D O I
10.1504/IJMIC.2021.123383
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The present study aims to propose a method for designing a predictive functional control (PFC) based on the particle swarm optimisation (PSO) algorithm for the multi-input multi-output (MIMO) process with time delay. Due to the cross-coupling, time delay, and other MIMO industrial process challenges, the classical controller could not overcome the system challenges. PFC is a model-based predictive controller that uses the state-space equations of the system. According to the results, the optimisation problem is resolved using the PSO for determining the optimal controller parameters. The incorporated PFC and PSO's performance as the proposed controller is evaluated using simulations on the chamber pressure coke furnace as a MIMO process with time-delay. The simulation results demonstrate that the PFC variables tuned by the PSO approach have better performance compared to the conventional PFC, especially in the presence of disturbances and uncertainty.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 45 条
[1]   Model predictive control optimisation using the metaheuristic optimisation for blood pressure control [J].
Ahmadpour, Mohammad Reza ;
Ghadiri, Hamid ;
Hajian, Saeed Reza .
IET SYSTEMS BIOLOGY, 2021, 15 (02) :41-52
[2]   Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming [J].
Bemporad, A ;
Filippi, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (01) :9-38
[3]   An ant colony optimization-based fuzzy predictive control approach for nonlinear processes [J].
Bououden, S. ;
Chadli, M. ;
Karimi, H. R. .
INFORMATION SCIENCES, 2015, 299 :143-158
[4]  
Dehghani A, 2017, INT C CONTR AUTOMAT, P15, DOI 10.23919/ICCAS.2017.8204416
[5]   Collision Avoidance Effects on the Mobility of a UAV Swarm Using Chaotic Ant Colony with Model Predictive Control [J].
Dentler, Jan ;
Rosalie, Martin ;
Danoy, Gregoire ;
Bouvry, Pascal ;
Kannan, Somasundar ;
Olivares-Mendez, Miguel A. ;
Voos, Holger .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 93 (1-2) :227-243
[6]   An online active set strategy to overcome the limitations of explicit MPC [J].
Ferreau, H. J. ;
Bock, H. G. ;
Diehl, M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (08) :816-830
[7]  
Ghadiri H., 2019, J COMPUTER ROBOTICS, V12, P65
[8]   LMI-based criterion for the robust guaranteed cost control of uncertain switched neutral systems with time-varying mixed delays and nonlinear perturbations by dynamic output feedback [J].
Ghadiri, Hamid ;
Jahed-Motlagh, Mohammad Reza .
COMPLEXITY, 2016, 21 (S2) :555-578
[9]  
Ghadiri H, 2014, INT J CONTROL AUTOM, V12, P1167, DOI [10.1007/s12555-013-0487-9, 10.1007/s12555-013-0524-8]
[10]  
Heidari M., 2017, P 2017 23 INT C AUT, P1, DOI DOI 10.23919/ICONAC.2017.8082074