Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

被引:82
作者
Sanchez-Gonzalez, A. [1 ]
Micaelli, P. [1 ]
Olivier, C. [1 ]
Barillot, T. R. [1 ]
Ilchen, M. [2 ,3 ]
Lutman, A. A. [4 ]
Marinelli, A. [4 ]
Maxwell, T. [4 ]
Achner, A. [3 ]
Agaker, M. [5 ]
Berrah, N. [6 ]
Bostedt, C. [4 ,7 ]
Bozek, J. D. [8 ]
Buck, J. [9 ]
Bucksbaum, P. H. [2 ,10 ]
Montero, S. Carron [4 ,11 ]
Cooper, B. [1 ]
Cryan, J. P. [2 ]
Dong, M. [5 ]
Feifel, R. [12 ]
Frasinski, L. J. [1 ]
Fukuzawa, H. [13 ]
Galler, A. [3 ]
Hartmann, G. [9 ,14 ,15 ]
Hartmann, N. [4 ]
Helml, W. [4 ,16 ]
Johnson, A. S. [1 ]
Knie, A. [14 ,15 ]
Lindahl, A. O. [2 ,12 ]
Liu, J. [3 ]
Motomura, K. [13 ]
Mucke, M. [5 ]
O'Grady, C. [4 ]
Rubensson, J. -E. [5 ]
Simpson, E. R. [1 ]
Squibb, R. J. [12 ]
Sathe, C. [17 ]
Ueda, K. [13 ]
Vacher, M. [18 ,19 ]
Walke, D. J. [1 ]
Zhaunerchyk, V. [12 ]
Coffee, R. N. [4 ]
Marangos, J. P. [1 ]
机构
[1] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[2] SLAC Natl Accelerator Lab, Stanford PULSE Inst, Menlo Pk, CA 94025 USA
[3] European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
[4] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA
[5] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[6] Univ Connecticut, Dept Phys, 2152 Hillside Rd,U-3046, Storrs, CT 06269 USA
[7] Argonne Natl Lab, Lemont, IL 60439 USA
[8] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France
[9] DESY, Notkestr 85, D-22607 Hamburg, Germany
[10] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA
[11] Calif Lutheran Univ, Dept Phys, 60 West Olsen Rd, Thousand Oaks, CA 91360 USA
[12] Univ Gothenburg, Dept Phys, Origovagen 6B, S-41296 Gothenburg, Sweden
[13] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
[14] Univ Kassel, Inst Phys, Heinrich Plett Str 40, D-34132 Kassel, Germany
[15] Univ Kassel, CINSaT, Heinrich Plett Str 40, D-34132 Kassel, Germany
[16] Tech Univ Munich, Phys Dept E11, James Franck Str 1, D-85748 Garching, Germany
[17] Lund Univ, MAX Lab 4, Box 118, SE-22100 Lund, Sweden
[18] Imperial Coll, Dept Chem, London SW7 2AZ, England
[19] Uppsala Univ, Dept Chem Angtrom, S-75120 Uppsala, Sweden
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 英国科学技术设施理事会; 瑞典研究理事会;
关键词
NEURAL-NETWORKS; FEMTOSECOND; TIME; PHYSICS; RADIATION; COHERENT; SPECTRA;
D O I
10.1038/ncomms15461
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.
引用
收藏
页数:9
相关论文
共 60 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Allaria E, 2013, NAT PHOTONICS, V7, P913, DOI [10.1038/NPHOTON.2013.277, 10.1038/nphoton.2013.277]
[3]  
Allaria E, 2012, NAT PHOTONICS, V6, P699, DOI [10.1038/nphoton.2012.233, 10.1038/NPHOTON.2012.233]
[4]   Control of the Polarization of a Vacuum-Ultraviolet, High-Gain, Free-Electron Laser [J].
Allaria, Enrico ;
Diviacco, Bruno ;
Callegari, Carlo ;
Finetti, Paola ;
Mahieu, Benoit ;
Viefhaus, Jens ;
Zangrando, Marco ;
De Ninno, Giovanni ;
Lambert, Guillaume ;
Ferrari, Eugenio ;
Buck, Jens ;
Ilchen, Markus ;
Vodungbo, Boris ;
Mahne, Nicola ;
Svetina, Cristian ;
Spezzani, Carlo ;
Di Mitri, Simone ;
Penco, Giuseppe ;
Trovo, Mauro ;
Fawley, William M. ;
Rebernik, Primoz R. ;
Gauthier, David ;
Grazioli, Cesare ;
Coreno, Marcello ;
Ressel, Barbara ;
Kivimaeki, Antti ;
Mazza, Tommaso ;
Glaser, Leif ;
Scholz, Frank ;
Seltmann, Joern ;
Gessler, Patrick ;
Gruenert, Jan ;
De Fanis, Alberto ;
Meyer, Michael ;
Knie, Andre ;
Moeller, Stefan P. ;
Raimondi, Lorenzo ;
Capotondi, Flavio ;
Pedersoli, Emanuele ;
Plekan, Oksana ;
Danailov, Miltcho B. ;
Demidovich, Alexander ;
Nikolov, Ivaylo ;
Abrami, Alessandro ;
Gautier, Julien ;
Luening, Jan ;
Zeitoun, Philippe ;
Giannessi, Luca .
PHYSICAL REVIEW X, 2014, 4 (04)
[5]  
Altarelli M., 2006, TECH REP, V97
[6]  
[Anonymous], TECHNICAL REPORT
[7]  
[Anonymous], ADV APPL STAT SER, DOI DOI 10.1214/ss/1177010638
[8]  
Atlas Collaboration, 2014, J INSTRUM, V9
[9]   A convolutional neural network neutrino event classifier [J].
Aurisano, A. ;
Radovic, A. ;
Rocco, D. ;
Himmel, A. ;
Messier, M. D. ;
Niner, E. ;
Pawloski, G. ;
Psihas, F. ;
Sousa, A. ;
Vahle, P. .
JOURNAL OF INSTRUMENTATION, 2016, 11
[10]   Searching for exotic particles in high-energy physics with deep learning [J].
Baldi, P. ;
Sadowski, P. ;
Whiteson, D. .
NATURE COMMUNICATIONS, 2014, 5