Measure Data Problems for a Class of Elliptic Equations with Mixed Absorption-Reaction

被引:4
作者
Bidaut-Veron, Marie-Francoise [1 ]
Garcia-Huidobro, Marta [2 ]
Veron, Laurent [1 ]
机构
[1] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
[2] Pontificia Univ Catolica Chile, Dept Matemat, Casilla 307,Correo 2, Santiago, Chile
关键词
Elliptic Equations; Singularities; Bessel Capacities; Riesz Potential; Maximal Functions; SINGULARITIES;
D O I
10.1515/ans-2021-2124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we study the existence of nonnegative solutions to the Dirichlet problem L-p(,q)M u := -Delta u + u(p) - M vertical bar del u vertical bar(q) = mu in a domain Omega subset of R-N where mu is a nonnegative Radon measure, when p > 1, q > 1 and M >= 0. We also give conditions under which nonnegative solutions of L-p(,q)M u = 0 in Omega \ K, where K is a compact subset of Omega, can be extended as a solution of the same equation in Omega.
引用
收藏
页码:261 / 280
页数:20
相关论文
共 27 条
[1]   Keller-Osserman type conditions for some elliptic problems with gradient terms [J].
Alarcon, Salomon ;
Garcia-Melian, Jorge ;
Quaas, Alexander .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :886-914
[2]  
[Anonymous], 1996, Adv. Differ. Equ.
[3]   ELIMINABLE SINGULARITIES FOR SEMILINEAR EQUATIONS [J].
BARAS, P ;
PIERRE, M .
ANNALES DE L INSTITUT FOURIER, 1984, 34 (01) :185-206
[4]  
Bidaut-Veron M.F, 2020, BOUNDARY SINGULAR SO
[5]   Liouville Results and Asymptotics of Solutions of a Quasilinear Elliptic Equation with Supercritical Source Gradient Term [J].
Bidaut-Veron, Marie-Francoise .
ADVANCED NONLINEAR STUDIES, 2021, 21 (01) :57-76
[6]   Quasilinear elliptic equations with a source reaction term involving the function and its gradient and measure data [J].
Bidaut-Veron, Marie-Francoise ;
Nguyen, Quoc-Hung ;
Veron, Laurent .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
[7]   ESTIMATES OF SOLUTIONS OF ELLIPTIC EQUATIONS WITH A SOURCE REACTION TERM INVOLVING THE PRODUCT OF THE FUNCTION AND ITS GRADIENT [J].
Bidaut-veron, Marie-Francoise ;
Garcia-Huidobro, Marta ;
Veron, Laurent .
DUKE MATHEMATICAL JOURNAL, 2019, 168 (08) :1487-1537
[8]  
Boccardo L., 1984, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V11, P213
[9]  
BREZIS H, 1980, ARCH RATION MECH AN, V75, P1
[10]   SEMI-LINEAR SECOND-ORDER ELLIPTIC EQUATIONS IN L1 [J].
BREZIS, H ;
STRAUSS, WA .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1973, 25 (04) :565-590