Fault Detection and Classification in Industrial IoT in Case of Missing Sensor Data

被引:34
作者
Dzaferagic, Merim [1 ]
Marchetti, Nicola [1 ]
Macaluso, Irene [1 ]
机构
[1] Trinity Coll Dublin, CONNECT Ctr, Dublin D02 PN40, Ireland
基金
爱尔兰科学基金会; 芬兰科学院;
关键词
Monitoring; Industrial Internet of Things; Fault detection; Data models; Training; Generative adversarial networks; Anomaly detection; Data imputation; fault classification; fault detection; generative adversarial network; Industrial Internet of Things (IIoT); VALUE IMPUTATION; BIG-DATA; CHALLENGES; INTERNET; THINGS;
D O I
10.1109/JIOT.2021.3116785
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article addresses the issue of reliability in the Industrial Internet of Things (IIoT) in case of missing sensors measurements due to network or hardware problems. We propose to support the fault detection and classification modules, which are the two critical components of a monitoring system for IIoT, with a generative model. The latter is responsible for imputing missing sensor measurements so that the monitoring system performance is robust to missing data. In particular, we adopt generative adversarial networks (GANs) to generate missing sensor measurements and we propose to fine-tune the training of the GAN based on the impact that the generated data have on the fault detection and classification modules. We conduct a thorough evaluation of the proposed approach using the extended Tennessee Eastman Process data set. Results show that the GAN-imputed data mitigate the impact on the fault detection and classification even in the case of persistently missing measurements from sensors that are critical for the correct functioning of the monitoring system.
引用
收藏
页码:8892 / 8900
页数:9
相关论文
共 34 条
[1]   Internet of Things: A survey on the security of IoT frameworks [J].
Ammar, Mahmoud ;
Russello, Giovanni ;
Crispo, Bruno .
JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2018, 38 :8-27
[2]   Enhanced Random Forest With Concurrent Analysis of Static and Dynamic Nodes for Industrial Fault Classification [J].
Chai, Zheng ;
Zhao, Chunhui .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) :54-66
[3]   Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window Convolutional Variational Autoencoder [J].
Chen, Tingting ;
Liu, Xueping ;
Xia, Bizhong ;
Wang, Wei ;
Lai, Yongzhi .
IEEE ACCESS, 2020, 8 :47072-47081
[4]   Industrial Cyberphysical Systems Realizing Cloud-Based Big Data Infrastructures [J].
Cheng, Bo ;
Zhang, Jingyi ;
Hancke, Gerhard P. ;
Karnouskos, Stamatis ;
Colombo, Armando Walter .
IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2018, 12 (01) :25-35
[5]  
Chiang R. B. L.H., 2001, FAULT DETECTION DIAG
[6]   Industrial Internet of Things monitoring solution for advanced predictive maintenance applications [J].
Civerchia, Federico ;
Bocchino, Stefano ;
Salvadori, Claudio ;
Rossi, Enrico ;
Maggiani, Luca ;
Petracca, Matteo .
JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2017, 7 :4-12
[7]   Industrial Edge Computing Enabling Embedded Intelligence [J].
Dai, Wenbin ;
Nishi, Hiroaki ;
Vyatkin, Valeriy ;
Huang, Victor ;
Shi, Yang ;
Guan, Xinping .
IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2019, 13 (04) :48-56
[8]   Missing Data Imputation With Bayesian Maximum Entropy for Internet of Things Applications [J].
Gonzalez-Vidal, Aurora ;
Rathore, Punit ;
Rao, Aravinda S. ;
Mendoza-Bernal, Jose ;
Palaniswami, Marimuthu ;
Skarmeta-Gomez, Antonio F. .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (21) :16108-16120
[9]   Learning from Imbalanced Data [J].
He, Haibo ;
Garcia, Edwardo A. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (09) :1263-1284
[10]   Software-Defined Wireless Communication for Industrial Control A Realistic Approach [J].
Hellstrom, Henrik ;
Luvisotto, Michele ;
Jansson, Roger ;
Pang, Zhibo .
IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2019, 13 (04) :31-37