Flexible N-doped carbon fibers decorated with Cu/Cu2O particles for excellent electromagnetic wave absorption

被引:28
作者
Liu, Xudong [1 ]
Huang, Ying [1 ]
Zhao, Xiaoxiao [1 ]
Yan, Jing [1 ]
Zong, Meng [1 ]
机构
[1] Northwestern Polytech Univ, Sch Chem & Chem Engn, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Xian 710072, Peoples R China
关键词
Flexible composite fibers; Impedance matching; Attenuation ability; Electromagnetic wave absorption; NANOFIBERS; MOF; LIGHTWEIGHT; COMPOSITES;
D O I
10.1016/j.jcis.2022.02.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible N-doped carbon fibers decorated with Cu/Cu2O particles (NCF-Cu/Cu2O) are synthesized through electrospinning, preoxidation and carbonization processes in this work. The characterization results indicate that HKUST-1 is embedded in polyacrylonitrile (PAN) fibers, and a special structure in which Cu/ Cu2O particles are strung together by carbon fibers is formed after preoxidation and carbonization. NCF-Cu/Cu2O is mixed with paraffin in different mass ratios (5%, 10%, 15%, 20% and 25%) to study electromagnetic (EM) wave absorption performance at frequencies from 2.0 GHz to 18.0 GHz. When the filling ratio is 10%, the maximum reflection loss (RL) value is-50.54 dB at 14.16 GHz with a thickness of 2.4 mm, and the maximum effective absorption bandwidth (EAB) value reaches 7.2 GHz (10.8 ti 18.0 G Hz) with a thickness of 2.6 mm. The NCF-Cu/Cu2O composite fibers exhibit strong absorption, broad bandwidth, low filling ratio and thin thickness, and the corresponding absorption mechanism is analyzed in detail. The excellent EM wave absorption performance is attributed to a suitable attenuation ability, good impedance matching, conductive loss, interfacial polarization, dipole polarization, multiple reflections and scattering. This work provides a research reference for the application of flexible carbon based composite fibers in the field of EM wave absorption. (C)& nbsp;2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 81 条
[1]   Nanofibrous membrane constructed magnetic materials for high-efficiency Chock for electromagnetic wave absorption [J].
Abdalla, Ibrahim ;
Yu, Jianyong ;
Li, Zhaoling ;
Ding, Bin .
COMPOSITES PART B-ENGINEERING, 2018, 155 :397-404
[2]   Cobalt@Nitrogen-Doped Porous Carbon Fiber Derived from the Electrospun Fiber of Bimetal-Organic Framework for Highly Active Oxygen Reduction [J].
Bai, Qing ;
Shen, Feng-Cui ;
Li, Shun-Li ;
Liu, Jiang ;
Dong, Long-Zhang ;
Wang, Zeng-Mei ;
Lan, Ya-Qin .
SMALL METHODS, 2018, 2 (12)
[3]   One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption [J].
Bi, Yuxin ;
Ma, Mingliang ;
Liao, Zijian ;
Tong, Zhouyu ;
Chen, Yan ;
Wang, Rongzhen ;
Ma, Yong ;
Wu, Guanglei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 605 :483-492
[4]   Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage [J].
Chen, Chen ;
Huang, Ying ;
Meng, Zhuoyue ;
Lu, Mengwei ;
Xu, Zhipeng ;
Liu, Panbo ;
Li, Tiehu .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 76 :11-19
[5]   1D magnetic nitrogen doped carbon-based fibers derived from NiFe Prussian blue analogues embedded polyacrylonitrile via electrospinning with tunable microwave absorption [J].
Chen, Fu ;
Zhang, Shanshan ;
Guo, Rundong ;
Ma, Beibei ;
Xiong, Yao ;
Luo, Hui ;
Cheng, Yongzhi ;
Wang, Xian ;
Gong, Rongzhou .
COMPOSITES PART B-ENGINEERING, 2021, 224
[6]   Carbon fibers@Co-ZIFs derivations composites as highly efficient electromagnetic wave absorbers [J].
Chen, Jiabin ;
Zheng, Jing ;
Huang, Qianqian ;
Wang, Gehuan ;
Ji, Guangbin .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 94 :239-246
[7]   Evolution of structural inhomogeneity in polyacrylonitrile fibers by oxidative stabilization [J].
Choi, Jiwon ;
Kim, Sung -Soo ;
Chung, Yong-Sik ;
Lee, Sungho .
CARBON, 2020, 165 :225-237
[8]   Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption [J].
Di, Xiaochuang ;
Wang, Yan ;
Lu, Zhao ;
Cheng, Runrun ;
Yang, Longqi ;
Wu, Xinming .
CARBON, 2021, 179 :566-578
[9]   MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J].
Gao, Sai ;
Zhang, Guozheng ;
Wang, Yi ;
Han, Xiaopeng ;
Huang, Ying ;
Liu, Panbo .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 88 :56-65
[10]   Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide @ mesoporous carbon composite [J].
Gu, Chunmeng ;
Wang, Qian ;
Zhang, Li ;
Yang, Pingping ;
Xie, Yixi ;
Fei, Junjie .
SENSORS AND ACTUATORS B-CHEMICAL, 2020, 305