Consistent non-Gaussian pseudo maximum likelihood estimators

被引:8
作者
Fiorentini, Gabriele [1 ,2 ]
Sentana, Enrique [3 ]
机构
[1] Univ Firenze, Viale Morgagni 59, I-50134 Florence, Italy
[2] RCEA, Viale Morgagni 59, I-50134 Florence, Italy
[3] CEMFI, Casado Alisal 5, E-28014 Madrid, Spain
关键词
Consistency; Efficiency; Misspecification; GARCH MODELS; VOLATILITY; EFFICIENCY; INFERENCE; SKEWNESS; KURTOSIS; ARCH;
D O I
10.1016/j.jeconom.2019.05.017
中图分类号
F [经济];
学科分类号
02 ;
摘要
We characterise the mean and variance parameters that distributionally misspecified maximum likelihood estimators can consistently estimate in location-scale models, and provide simple closed-form consistent estimators for the rest. Including means and a multivariate coverage make our procedures useful for GARCH-M models and empirically relevant macro and finance applications involving VARS and multivariate regressions. We study the statistical properties of our proposed consistent estimators, as well as their efficiency relative to Gaussian pseudo maximum likelihood and semiparametric procedures. We provide finite sample results through Monte Carlo simulations. Finally, we discuss two practical applications to individual stock returns and mean variance efficiency/spanning tests. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:321 / 358
页数:38
相关论文
共 50 条
[41]   Maximum likelihood estimators in finite mixture models with censored data [J].
Miyata, Yoichi .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) :56-64
[42]   Maximum Likelihood Estimators on MCMC Sampling Algorithms for Decision Making [J].
Karras, Christos ;
Karras, Aristeidis ;
Avlonitis, Markos ;
Giannoukou, Ioanna ;
Sioutas, Spyros .
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2022, 652 :345-356
[43]   Correlations Among Maximum Likelihood and Weighted/Unweighted Least Squares Estimators in Factor Analysis [J].
Haruhiko Ogasawara .
Behaviormetrika, 2003, 30 (1) :63-86
[44]   Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data [J].
Huang, Xianzheng ;
Sarker Warasi, Md Shamim .
SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (04) :918-931
[45]   Finite-Sample Theory and Bias Correction of Maximum Likelihood Estimators in the EGARCH Model [J].
Demos, Antonis ;
Kyriakopoulou, Dimitra .
JOURNAL OF TIME SERIES ECONOMETRICS, 2019, 11 (01)
[46]   A maximum pseudo-likelihood approach for phylogenetic networks [J].
Yu, Yun ;
Nakhleh, Luay .
BMC GENOMICS, 2015, 16 :1-10
[47]   Simulation of non-Gaussian random vibration [J].
Xu, Fei ;
Li, Chuanri ;
Jiang, Tongmin ;
Rong, Shuanglong .
Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (09) :1239-1244
[48]   Non-Gaussian models for CoVaR estimation [J].
Bianchi, Michele Leonardo ;
De Luca, Giovanni ;
Rivieccio, Giorgia .
INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (01) :391-404
[49]   On maximum likelihood estimation for Gaussian spatial autoregression models [J].
Mohapl, J .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1998, 50 (01) :165-186
[50]   On Maximum Likelihood Estimation for Gaussian Spatial Autoregression Models [J].
Jaroslav Mohapl .
Annals of the Institute of Statistical Mathematics, 1998, 50 :165-186